使用Matplotlib绘制不同颜色的带箭头的线实例

周五的时候计算出来一条线路,但是计算出来的只是类似与

0->10->19->2->..0

这样的线路只有写代码的人才能看的懂无法直观的表达出来,让其它同事看的不清晰,所以考虑怎样直观的把线路图画出来。

&esp; 当然是考虑用matplotlib了,

导入相关的库

import matplotlib.pyplot as plt
import numpy
import matplotlib.colors as colors
import matplotlib.cm as cmx

后面两个主要是用于处理颜色的。

准备数据

 _locations = [
    (4, 4), # depot
    (4, 4), # unload depot_prime
    (4, 4), # unload depot_second
    (4, 4), # unload depot_fourth
    (4, 4), # unload depot_fourth
    (4, 4), # unload depot_fifth
    (2, 0),
    (8, 0), # locations to visit
    (0, 1),
    (1, 1),
    (5, 2),
    (7, 2),
    (3, 3),
    (6, 3),
    (5, 5),
    (8, 5),
    (1, 6),
    (2, 6),
    (3, 7),
    (6, 7),
    (0, 8),
    (7, 8)
  ]

画图

plt.figure(figsize=(10, 10))
p1 = [l[0] for l in _locations]
p2 = [l[1] for l in _locations]
plt.plot(p1[:6], p2[:6], 'g*', ms=20, label='depot')
plt.plot(p1[6:], p2[6:], 'ro', ms=15, label='customer')
plt.grid(True)
plt.legend(loc='lower left')

way = [[0, 12, 18, 17, 16, 4, 14, 10, 11, 13, 5], [0, 6, 9, 8, 20, 3], [0, 19, 21, 15, 7, 2]]  # 

cmap = plt.cm.jet
cNorm = colors.Normalize(vmin=0, vmax=len(way))
scalarMap = cmx.ScalarMappable(norm=cNorm,cmap=cmap)

for k in range(0, len(way)):
  way0 = way[k]
  colorVal = scalarMap.to_rgba(k)
  for i in range(0, len(way0)-1):
    start = _locations[way0[i]]
    end = _locations[way0[i+1]]
#     plt.arrow(start[0], start[1], end[0]-start[0], end[1]-start[1], length_includes_head=True,
#         head_width=0.2, head_length=0.3, fc='k', ec='k', lw=2, ls=lineStyle[k], color='red')
    plt.arrow(start[0], start[1], end[0]-start[0], end[1]-start[1],
         length_includes_head=True, head_width=0.2, lw=2,
         color=colorVal)
plt.show()
cmap = plt.cm.jet
cNorm = colors.Normalize(vmin=0, vmax=len(way))
scalarMap = cmx.ScalarMappable(norm=cNorm,cmap=cmap)

cmap可以理解为颜色库,cNorm设置颜色的范围,有几条线路就设置几种颜色,scalarMap颜色生成完毕。最后在绘图的时候,根据索引获得相应的颜色就可以了。

结果如下:

补充知识:Python包matplotlib绘图--如何标注某点--附代码

# -*- coding: utf-8 -*-
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
plt.style.use('classic')

plt.rcParams['font.sans-serif'] = ['SimHei'] #解决中文显示
plt.rcParams['axes.unicode_minus'] = False #解决符号无法显示

x=np.array([1,2,3,4,5,6,7,8])
y1=np.array([3,5,35,300,800,600,1200,4000])
y2=np.array([8,14,94,703,1300,1660,2801,12768])

fig1 = plt.figure()

ax = plt.axes()
ax.plot(x, y2,label='时间/秒')
ax.set(xlabel='目标函数个数', ylabel='程序运行时间',title='多目标收敛速度')

plt.hlines(703, 0, 4, colors='r', linestyle="--")
plt.text(0, 703, "703")
plt.hlines(1300, 0, 5, colors='g', linestyle="--")
plt.text(0, 1300, "1300")

# annotate
plt.annotate("703秒", (4,703), xycoords='data',
       xytext=(4.2, 2000),
       arrowprops=dict(arrowstyle='->'))
plt.annotate("94秒", (3,94), xycoords='data',
       xytext=(3.5, 2000),
       arrowprops=dict(arrowstyle='->'))
plt.annotate("14秒", (2,14), xycoords='data',
       xytext=(2.5, 2000),
       arrowprops=dict(arrowstyle='->'))
plt.annotate("8秒", (1,8), xycoords='data',
       xytext=(1.5, 2000),
       arrowprops=dict(arrowstyle='->'))
plt.legend()
plt.show()
fig1.savefig('my_figure1.png')

import numpy as np
from matplotlib import pyplot as plt
from matplotlib.path import Path
from matplotlib.patches import PathPatch

# Use seaborn to change the default graphics to something nicer
import seaborn as sns
# And set a nice color palette
sns.set_color_codes('deep')

# Create the plot object
fig, ax = plt.subplots(figsize=(5, 4))
x = np.linspace(0, 1000)

# Add finishing constraint: x2 <= 100/2 - x1/2
plt.plot(x, 50/4 - 3*x/4, linewidth=3, label='First constraint')
plt.fill_between(x, 0, 100/2 - x/2, alpha=0.1)

# Add carpentry constraint: x2 <= 80 - x1
plt.plot(x, 30 - 2*x, linewidth=3, label='Second constraint')
plt.fill_between(x, 0, 100 - 2*x, alpha=0.1)

# Add non-negativity constraints
plt.plot(np.zeros_like(x), x, linewidth=3, label='$x$ Sign restriction')
plt.plot(x, np.zeros_like(x), linewidth=3, label='$y$ Sign restriction')

#====================================================
# This part is different from giapetto_feasible.py
# Plot the possible (x1, x2) pairs
pairs = [(x, y) for x in np.arange(101)
        for y in np.arange(101)
        if (300*x + 400*y) <= 5000
        and (200*x + 100*y) <= 3000]

# Split these into our variables
chairs, tables = np.hsplit(np.array(pairs), 2)

# Caculate the objective function at each pair
z =8*chairs + 9*tables

# Plot the results
plt.scatter(chairs, tables, c=z, cmap='jet', edgecolor='gray', alpha=0.5, label='Profit at each point', zorder=3)

# Colorbar
cb = plt.colorbar()
cb.set_label('Profit Colormap ($)')
#====================================================

# Labels and stuff
plt.xlabel('Package A')
plt.ylabel('Package B')
plt.xlim(-0.5, 20)
plt.ylim(-0.5, 20)
plt.legend()
fig01 = plt.figure()
plt.show()

以上这篇使用Matplotlib绘制不同颜色的带箭头的线实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 使用Matplotlib绘制不同颜色的带箭头的线实例

    周五的时候计算出来一条线路,但是计算出来的只是类似与 0->10->19->2->..0 这样的线路只有写代码的人才能看的懂无法直观的表达出来,让其它同事看的不清晰,所以考虑怎样直观的把线路图画出来. &esp; 当然是考虑用matplotlib了, 导入相关的库 import matplotlib.pyplot as plt import numpy import matplotlib.colors as colors import matplotlib.cm as cm

  • mapboxgl实现带箭头轨迹线的代码

    最近在使用mapboxgl实现轨迹展示时,想实现类似高德地图导航轨迹效果,然而并未在网上找到类似示例.经一番研究与尝试,最终解决,效果如下. 添加箭头核心代码如下,只需在配置layout中添加symbol-placement和symbol-spacing属性即可: // 添加箭头图层 function addArrowlayer() { map.addLayer({ 'id': 'arrowLayer', 'type': 'symbol', 'source': { 'type': 'geojso

  • 使用three.js 绘制三维带箭头线的详细过程

    需求:这个需求是个刚需啊!在一个地铁场景里展示逃生路线,这个路线肯定是要有指示箭头的,为了画这个箭头,我花了不少于十几个小时,总算做出来了,但始终有点问题.我对这个箭头的要求是,无论场景拉近还是拉远,这个箭头不能太大,也不能太小看不清,形状不能变化,否则就不像箭头了. 使用到了 three.js 的 Line2.js 和一个开源库MeshLine.js 部分代码: DrawPath.js: /** * 绘制路线 */ import * as THREE from '../build/three.

  • Python matplotlib绘制图形实例(包括点,曲线,注释和箭头)

    Python的matplotlib模块绘制图形功能很强大,今天就用pyplot绘制一个简单的图形,图形中包括曲线.曲线上的点.注释和指向点的箭头. 1. 结果预览: 2. 代码如下: from matplotlib import pyplot as plt import numpy as np # 绘制曲线 x = np.linspace(2, 21, 20) # 取闭区间[2, 21]之间的等差数列,列表长度20 y = np.log10(x) + 0.5 plt.figure() # 添加一

  • Python基于matplotlib绘制栈式直方图的方法示例

    本文实例讲述了Python基于matplotlib绘制栈式直方图的方法.分享给大家供大家参考,具体如下: 平时我们只对一组数据做直方图统计,这样我们只要直接画直方图就可以了. 但有时候我们同时画多组数据的直方图(比如说我大一到大四跑大学城内环的用时的分布),大一到大四用不同颜色的直方图,显示在一张图上,这样会很直观. #!/usr/bin/env python # -*- coding: utf-8 -*- #http://www.jb51.net/article/100363.htm # nu

  • Android自定义ViewGroup实现带箭头的圆角矩形菜单

    本文和大家一起做一个带箭头的圆角矩形菜单,大概长下面这个样子: 要求顶上的箭头要对准菜单锚点,菜单项按压反色,菜单背景色和按压色可配置. 最简单的做法就是让UX给个三角形的图片往上一贴,但是转念一想这样是不是太low了点,而且不同分辨率也不太好适配,干脆自定义一个ViewGroup吧! 自定义ViewGroup其实很简单,基本都是按一定的套路来的. 一.定义一个attrs.xml 就是声明一下你的这个自定义View有哪些可配置的属性,将来使用的时候可以自由配置.这里声明了7个属性,分别是:箭头宽

  • Android 带箭头的指引tipLayout实现示例代码

    本文介绍了Android 带箭头的指引tipLayout实现示例代码,分享给大家,具体如下: 如上是从UI接过来的设计图,要求三角形指示器需要动态对齐上面的文本,需要动态的实现对其三角形. 引用方式 compile 'com.xiaowei:TriangleTipLayout:1.0.0' 实现思路 准备一个三角形指引的图片即可. 先上代码 final TextPaint textPaint = mTextView.getPaint(); final int textHeight = (int)

  • 利用PyQt5+Matplotlib 绘制静态/动态图的实现代码

    代码编辑环境 Win10+(Pycharmm or Vscode)+PyQt 5.14.2 功能实现 静态作图:数据作图,取决于作图函数,可自行修改 动态作图:产生数据,获取并更新数据,最后刷新显示,可用于实现数据实时采集并显示的场景 效果展示 代码块(业务与逻辑分离)业务–UI界面代码 文件名:Ui_realtimer_plot.py # -*- coding: utf-8 -*- # Added by the Blog author VERtiCaL on 2020/07/12 at SSR

  • python使用matplotlib绘制折线图的示例代码

    示例代码如下: #!/usr/bin/python #-*- coding: utf-8 -*- import matplotlib.pyplot as plt # figsize - 图像尺寸(figsize=(10,10)) # facecolor - 背景色(facecolor="blue") # dpi - 分辨率(dpi=72) fig = plt.figure(figsize=(10,10),facecolor="blue") #figsize默认为4,

  • matplotlib绘制正余弦曲线图的实现

    序言: 在python里面,数据可视化是python的一个亮点.在python里面,数据可视可以达到什么样的效果,这当然与我们使用的库有关.python常常需要导入库,并不断调用方法,就很像一条流数据可视化的库,有很多,很多都可以后续开发,然后我们调用.了解过pyecharts美观的可视化界面 ,将pyecharts和matplotlib相对比一下. pyecharts和matplotlib的区别在哪里呢?Matplotlib是Python数据可视化库的泰斗,尽管已有十多年的历史,但仍然是Pyt

随机推荐