python 利用已有Ner模型进行数据清洗合并代码

我就废话不多说了,直接上代码吧!

# -*- coding: utf-8 -*-
from kashgari.corpus import DataReader
import re
from tqdm import tqdm

def cut_text(text, lenth):
  textArr = re.findall('.{' + str(lenth) + '}', text)
  textArr.append(text[(len(textArr) * lenth):])
  return textArr

def clean_data(source_file, target_file, ner_model):

  data_x, data_y = DataReader().read_conll_format_file(source_file)

  with tqdm(total=len(data_x)) as pbar:
    for idx, text_array in enumerate(data_x):
      if len(text_array) <= 100:
        ners = ner_model.predict([text_array])
        ner = ners[0]
      else:
        texts = cut_text(''.join(text_array), 100)
        ners = []
        for text in texts:
          ner = ner_model.predict([[char for char in text]])
          ners = ners + ner[0]
        ner = ners
      # print('[-----------------------', idx, len(data_x))
      # print(data_y[idx])
      # print(ner)

      for jdx, t in enumerate(text_array):
        if ner[jdx].startswith('B') or ner[jdx].startswith('I') :
          if data_y[idx][jdx] == 'O':
            data_y[idx][jdx] = ner[jdx]

      # print(data_y[idx])
      # print('-----------------------]')
      pbar.update(1)

  f = open(target_file, 'a', encoding="utf-8")
  for idx, text_array in enumerate(data_x):
    if idx != 0:
      f.writelines(['\n'])
    for jdx, t in enumerate(text_array):
      text = t + ' ' + data_y[idx][jdx]
      if idx == 0 and jdx == 0:
        text = text
      else:
        text = '\n' + text
      f.writelines([text])  

  f.close()  

  data_x2, data_y2 = DataReader().read_conll_format_file(source_file)
  print(data_x == data_x2, len(data_y) == len(data_y2), '数据清洗完成')
# -*- coding: utf-8 -*-
import kashgari
from data_tools import clean_data
time_ner = kashgari.utils.load_model('time_ner.h5')
clean_data('./data/example.dev', 'example.dev', time_ner)

以上这篇python 利用已有Ner模型进行数据清洗合并代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python 数据清洗之数据合并、转换、过滤、排序

    前面我们用pandas做了一些基本的操作,接下来进一步了解数据的操作, 数据清洗一直是数据分析中极为重要的一个环节. 数据合并 在pandas中可以通过merge对数据进行合并操作. import numpy as np import pandas as pd data1 = pd.DataFrame({'level':['a','b','c','d'], 'numeber':[1,3,5,7]}) data2=pd.DataFrame({'level':['a','b','c','e'], '

  • Python进行数据提取的方法总结

    准备工作 首先是准备工作,导入需要使用的库,读取并创建数据表取名为loandata. import numpy as np import pandas as pd loandata=pd.DataFrame(pd.read_excel('loan_data.xlsx')) 设置索引字段 在开始提取数据前,先将member_id列设置为索引字段.然后开始提取数据. Loandata = loandata.set_index('member_id') 按行提取信息 第一步是按行提取数据,例如提取某个

  • Python实现合并两个列表的方法分析

    本文实例讲述了Python实现合并两个列表的方法.分享给大家供大家参考,具体如下: 浏览博客看到一个问题:如何合并两个列表,今天就来探讨一下. 方法一 最原始,最笨的方法,分别从两个列表中取出所有的元素,再放入新列表中就OK了.示例代码如下: list1 = [1,2,3] list2 = [4,5,6] list_new = [] for item in list1: list_new.append(item) for item in list2: list_new.append(item)

  • 8段用于数据清洗Python代码(小结)

    最近,大数据工程师Kin Lim Lee在Medium上发表了一篇文章,介绍了8个用于数据清洗的Python代码. 数据清洗,是进行数据分析和使用数据训练模型的必经之路,也是最耗费数据科学家/程序员精力的地方. 这些用于数据清洗的代码有两个优点:一是由函数编写而成,不用改参数就可以直接使用.二是非常简单,加上注释最长的也不过11行.在介绍每一段代码时,Lee都给出了用途,也在代码中也给出注释.大家可以把这篇文章收藏起来,当做工具箱使用. 涵盖8大场景的数据清洗代码 这些数据清洗代码,一共涵盖8个

  • python 利用已有Ner模型进行数据清洗合并代码

    我就废话不多说了,直接上代码吧! # -*- coding: utf-8 -*- from kashgari.corpus import DataReader import re from tqdm import tqdm def cut_text(text, lenth): textArr = re.findall('.{' + str(lenth) + '}', text) textArr.append(text[(len(textArr) * lenth):]) return textAr

  • Python利用字典将两个通讯录文本合并为一个文本实例

    本文实例主要实现的是利用字典将两个通讯录文本合并为一个文本,具体代码如下: def main(): ftele1=open("d:\TeleAddressBook.txt","rb") ftele2=open("d:\EmailAddressBook.txt","rb") ftele1.readline()#跳过第一行 ftele2.readline() lines1=ftele1.readlines() lines2=fte

  • Python 利用OpenCV给照片换底色的示例代码

    OpenCV的全称是:Open Source Computer Vision Library.OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法.相比于PIL库来说OpenCV更加强大, 可以做更多更复杂的应用,比如人脸识别等. 1. 读入并显示图片 im

  • python利用Opencv实现人脸识别功能

    本文实例为大家分享了python利用Opencv实现人脸识别功能的具体代码,供大家参考,具体内容如下 首先:需要在在自己本地安装opencv具体步骤可以问度娘 如果从事于开发中的话建议用第三方的人脸识别(推荐阿里) 1.视频流中进行人脸识别 # -*- coding: utf-8 -*- import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx): cv2.namedWindow(w

  • Python利用逻辑回归模型解决MNIST手写数字识别问题详解

    本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题.分享给大家供大家参考,具体如下: 1.MNIST手写识别问题 MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几.可以通过TensorFLow下载MNIST手写数据集,通过import引入MNIST数据集并进行读取,会自动从网上下载所需文件. %matplotlib inline import tensorflow as tf import tensorflow.examples.tutori

  • python利用xpath爬取网上数据并存储到django模型中

    帮朋友制作一个网站,需要一些产品数据信息,因为是代理其他公司产品,直接爬取代理公司产品数据 1.设计数据库 from django.db import models from uuslug import slugify import uuid import os def products_directory_path(instance, filename): ext = filename.split('.')[-1] filename = '{}.{}'.format(uuid.uuid4().

  • python利用元类和描述器实现ORM模型的详细步骤

    ORM模型: ORM模型对于后端开发来说肯定是不陌生的,包括很多后端框架比如django,现在都自带这个模型了 ORM(Object Relational Mapping)对象关系映射 Python中的类与数据库之间的映射,对数据的操作就不用编写SQL语言了,因为都封装好了,比如你想插入一条数据,你就直接创建一个对象即可, 类名 ------->>>> 数据库中的表名 属性 ------->>>> 数据库中的字段 对象 ------->>>

  • python神经网络tensorflow利用训练好的模型进行预测

    目录 学习前言 载入模型思路 实现代码 学习前言 在神经网络学习中slim常用函数与如何训练.保存模型文章里已经讲述了如何使用slim训练出来一个模型,这篇文章将会讲述如何预测. 载入模型思路 载入模型的过程主要分为以下四步: 1.建立会话Session: 2.将img_input的placeholder传入网络,建立网络结构: 3.初始化所有变量: 4.利用saver对象restore载入所有参数. 这里要注意的重点是,在利用saver对象restore载入所有参数之前,必须要建立网络结构,因

  • Python机器学习入门(六)优化模型

    目录 1.集成算法 1.1袋装算法 1.1.1袋装决策树 1.1.2随机森林 1.1.3极端随机树 1.2提升算法 1.2.1AdaBoost 1.2.2随机梯度提升 1.3投票算法 2.算法调参 2.1网络搜索优化参数 2.2随机搜索优化参数 总结 有时提升一个模型的准确度很困难.你会尝试所有曾学习过的策略和算法,但模型正确率并没有改善.这时你会觉得无助和困顿,这也正是90%的数据科学家开始放弃的时候.不过,这才是考验真正本领的时候!这也是普通的数据科学家和大师级数据科学家的差距所在. 1.集

  • Python机器学习入门(四)选择模型

    目录 1.数据分离与验证 1.1分离训练数据集和评估数据集 1.2K折交叉验证分离 1.3弃一交叉验证分离 1.4重复随机分离评估数据集与训练数据集 2.算法评估 2.1分类算法评估 2.1.1分类准确度 2.1.2分类报告 2.2回归算法评估 2.2.1平均绝对误差 2.2.2均方误差 2.2.3判定系数() 总结 1.数据分离与验证 要知道算法模型对未知的数据表现如何,最好的评估办法是利用已经明确知道结果的数据运行生成的算法模型进行验证.此外还可以使用新的数据来评估算法模型. 在评估机器学习

随机推荐