Python谱减法语音降噪实例

代码中用到了nextpow2,其中n = nextpow2(x) 表示最接近x的2的n次幂。

#!/usr/bin/env python
import numpy as np
import wave
import nextpow2
import math

# 打开WAV文档
f = wave.open("filename.wav")
# 读取格式信息
# (nchannels, sampwidth, framerate, nframes, comptype, compname)
params = f.getparams()
nchannels, sampwidth, framerate, nframes = params[:4]
fs = framerate
# 读取波形数据
str_data = f.readframes(nframes)
f.close()
# 将波形数据转换为数组
x = np.fromstring(str_data, dtype=np.short)
# 计算参数
len_ = 20 * fs // 1000
PERC = 50
len1 = len_ * PERC // 100
len2 = len_ - len1
# 设置默认参数
Thres = 3
Expnt = 2.0
beta = 0.002
G = 0.9
# 初始化汉明窗
win = np.hamming(len_)
# normalization gain for overlap+add with 50% overlap
winGain = len2 / sum(win)

# Noise magnitude calculations - assuming that the first 5 frames is noise/silence
nFFT = 2 * 2 ** (nextpow2.nextpow2(len_))
noise_mean = np.zeros(nFFT)

j = 0
for k in range(1, 6):
  noise_mean = noise_mean + abs(np.fft.fft(win * x[j:j + len_], nFFT))
  j = j + len_
noise_mu = noise_mean / 5

# --- allocate memory and initialize various variables
k = 1
img = 1j
x_old = np.zeros(len1)
Nframes = len(x) // len2 - 1
xfinal = np.zeros(Nframes * len2)

# =========================  Start Processing  ===============================
for n in range(0, Nframes):
  # Windowing
  insign = win * x[k-1:k + len_ - 1]
  # compute fourier transform of a frame
  spec = np.fft.fft(insign, nFFT)
  # compute the magnitude
  sig = abs(spec)

  # save the noisy phase information
  theta = np.angle(spec)
  SNRseg = 10 * np.log10(np.linalg.norm(sig, 2) ** 2 / np.linalg.norm(noise_mu, 2) ** 2)

  def berouti(SNR):
    if -5.0 <= SNR <= 20.0:
      a = 4 - SNR * 3 / 20
    else:
      if SNR < -5.0:
        a = 5
      if SNR > 20:
        a = 1
    return a

  def berouti1(SNR):
    if -5.0 <= SNR <= 20.0:
      a = 3 - SNR * 2 / 20
    else:
      if SNR < -5.0:
        a = 4
      if SNR > 20:
        a = 1
    return a

  if Expnt == 1.0: # 幅度谱
    alpha = berouti1(SNRseg)
  else: # 功率谱
    alpha = berouti(SNRseg)
  #############
  sub_speech = sig ** Expnt - alpha * noise_mu ** Expnt;
  # 当纯净信号小于噪声信号的功率时
  diffw = sub_speech - beta * noise_mu ** Expnt
  # beta negative components

  def find_index(x_list):
    index_list = []
    for i in range(len(x_list)):
      if x_list[i] < 0:
        index_list.append(i)
    return index_list

  z = find_index(diffw)
  if len(z) > 0:
    # 用估计出来的噪声信号表示下限值
    sub_speech[z] = beta * noise_mu[z] ** Expnt
    # --- implement a simple VAD detector --------------
    if SNRseg < Thres: # Update noise spectrum
      noise_temp = G * noise_mu ** Expnt + (1 - G) * sig ** Expnt # 平滑处理噪声功率谱
      noise_mu = noise_temp ** (1 / Expnt) # 新的噪声幅度谱
    # flipud函数实现矩阵的上下翻转,是以矩阵的“水平中线”为对称轴
    # 交换上下对称元素
    sub_speech[nFFT // 2 + 1:nFFT] = np.flipud(sub_speech[1:nFFT // 2])
    x_phase = (sub_speech ** (1 / Expnt)) * (np.array([math.cos(x) for x in theta]) + img * (np.array([math.sin(x) for x in theta])))
    # take the IFFT

    xi = np.fft.ifft(x_phase).real
    # --- Overlap and add ---------------
    xfinal[k-1:k + len2 - 1] = x_old + xi[0:len1]
    x_old = xi[0 + len1:len_]
    k = k + len2
# 保存文件
wf = wave.open('outfile.wav', 'wb')
# 设置参数
wf.setparams(params)
# 设置波形文件 .tostring()将array转换为data
wave_data = (winGain * xfinal).astype(np.short)
wf.writeframes(wave_data.tostring())
wf.close()

以上这篇Python谱减法语音降噪实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 使用python 对验证码图片进行降噪处理

    首先贴一张验证码上来做案例: 第一步先通过二值化处理把干扰线去掉: from PIL import Image # 二值化处理 def two_value(): for i in range(1,5): # 打开文件夹中的图片 image=Image.open('./Img/'+str(i)+'.jpg') # 灰度图 lim=image.convert('L') # 灰度阈值设为165,低于这个值的点全部填白色 threshold=165 table=[] for j in range(256

  • Python谱减法语音降噪实例

    代码中用到了nextpow2,其中n = nextpow2(x) 表示最接近x的2的n次幂. #!/usr/bin/env python import numpy as np import wave import nextpow2 import math # 打开WAV文档 f = wave.open("filename.wav") # 读取格式信息 # (nchannels, sampwidth, framerate, nframes, comptype, compname) par

  • python文字转语音的实例代码分析

    使用百度接口 接口地址 https://ai.baidu.com/docs#/TTS-Online-Python-SDK/top 安装接口 pip install baidu-aip from aip import AipSpeech """ 你的 APPID AK SK """ APP_ID = '你的 App ID' API_KEY = '你的 Api Key' SECRET_KEY = '你的 Secret Key' client = Ai

  • Selenium+Python 自动化操控登录界面实例(有简单验证码图片校验)

    从最简单的Web浏览器的登录界面开始,登录界面如下: 进行Web页面自动化测试,对页面上的元素进行定位和操作是核心.而操作又是以定位为前提的,因此,对页面元素的定位是进行自动化测试的基础. 页面上的元素就像人一样,有各种属性,比如元素名字,元素id,元素属性(class属性,name属性)等等.webdriver就是利用元素的这些属性来进行定位的. 可以用于定位的常用的元素属性: id name class name tag name link text partial link text xp

  • python调用百度语音REST API

    本文实例为大家分享了python调用百度语音REST API的具体代码,供大家参考,具体内容如下 (百度的rest接口的部分网址发生了一定的变化,相关代码已更新) 百度通过 REST API 的方式给开发者提供一个通用的 HTTP 接口,基于该接口,开发者可以轻松的获得语音合成与语音识别能力.SDK中只提供了PHP.C和JAVA的相关样例,使用python也可以灵活的对端口进行调用,本文描述了简单使用Python调用百度语音识别服务 REST API 的简单样例. 1.语音识别与语音合成的调用

  • python聚类算法选择方法实例

    说明 1.如果数据集是高维度的,选择谱聚类是子空间的一种. 2.如果数据量是中小型的,比如在100W条以内,K均值会是更好的选择:如果数据量超过100W条,可以考虑使用MiniBatchKMeans. 3.如果数据集中有噪声(离群点),使用基于密度的DBSCAN可以有效解决这个问题. 4.若追求更高的分类准确性,则选择谱聚类比K均值准确性更好. 实例 import numpy as np import matplotlib.pyplot as plt # 数据准备 raw_data = np.l

  • Python 通过URL打开图片实例详解

    Python 通过URL打开图片实例详解 不论是用OpenCV还是PIL,skimage等库,在之前做图像处理的时候,几乎都是读取本地的图片.最近尝试爬虫爬取图片,在保存之前,我希望能先快速浏览一遍图片,然后有选择性的保存.这里就需要从url读取图片了.查了很多资料,发现有这么几种方法,这里做个记录. 本文用到的图片URL如下: img_src = 'http://wx2.sinaimg.cn/mw690/ac38503ely1fesz8m0ov6j20qo140dix.jpg' 1.用Open

  • Python创建二维数组实例(关于list的一个小坑)

    0.目录 1.遇到的问题 2.创建二维数组的办法 •3.1 直接创建法 •3.2 列表生成式法 •3.3 使用模块numpy创建 1.遇到的问题 今天写Python代码的时候遇到了一个大坑,差点就耽误我交作业了... 问题是这样的,我需要创建一个二维数组,如下: m = n = 3 test = [[0] * m] * n print("test =", test) 输出结果如下: test = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] 是不是看起来没有一点问

  • python 生成器协程运算实例

    一.yield运行方式 我们定义一个如下的生成器: def put_on(name): print("Hi {}, 货物来了,准备搬到仓库!".format(name)) while True: goods = yield print("货物[%s]已经被%s搬进仓库了."%(goods,name)) p = put_on("bigberg") #输出 G:\python\install\python.exe G:/python/untitled

  • Python命令启动Web服务器实例详解

    Python命令启动Web服务器实例详解 利用Python自带的包可以建立简单的web服务器.在DOS里cd到准备做服务器根目录的路径下,输入命令: python -m Web服务器模块 [端口号,默认8000] 例如: python -m SimpleHTTPServer 8080 然后就可以在浏览器中输入 http://localhost:端口号/路径 来访问服务器资源. 例如: http://localhost:8080/index.htm(当然index.htm文件得自己创建) 其他机器

  • 理解Python中的类与实例

    面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板,比如Student类,而实例是根据类创建出来的一个个具体的"对象",每个对象都拥有相同的方法,但各自的数据可能不同. 仍以Student类为例,在Python中,定义类是通过class关键字: class Student(object): pass class后面紧接着是类名,即Student,类名通常是大写开头的单词,紧接着是(object),表示该类是从哪个类继承下来的,继承的概念我们后面再

随机推荐