opencv3/python 鼠标响应操作详解

鼠标回调函数:

def setMouseCallback(
windowName,     #窗口名称
onMouse,      #鼠标响应处理函数
param=None)     #处理函数的ID

event鼠标事件:

event:
EVENT_LBUTTONDBLCLK = 7     左键双击
EVENT_LBUTTONDOWN = 1      左键点击
EVENT_LBUTTONUP = 4       左键释放
EVENT_MBUTTONDBLCLK = 9     中间释放
EVENT_MBUTTONDOWN = 3      中间点击
EVENT_MBUTTONUP = 6       中间释放
EVENT_MOUSEHWHEEL = 11     滚轮事件
EVENT_MOUSEMOVE = 0       滑动
EVENT_MOUSEWHEEL = 10      滚轮事件
EVENT_RBUTTONDBLCLK = 8     右键双击
EVENT_RBUTTONDOWN = 2      右键点击
EVENT_RBUTTONUP = 5       右键释放

flags:
EVENT_FLAG_ALTKEY = 32     按Alt不放事件
EVENT_FLAG_CTRLKEY = 8     按Ctrl不放事件
EVENT_FLAG_LBUTTON = 1     左键拖拽
EVENT_FLAG_MBUTTON = 4     中键拖拽
EVENT_FLAG_RBUTTON = 2     右键拖拽
EVENT_FLAG_SHIFTKEY = 16    按Shift不放事件

示例

在图像上用鼠标点击左键拖拽画一矩形,并输出矩形信息:

import cv2
def draw_rectangle(event,x,y,flags,param):
  global ix, iy
  if event==cv2.EVENT_LBUTTONDOWN:
    ix, iy = x, y
    print("point1:=", x, y)
  elif event==cv2.EVENT_LBUTTONUP:
    print("point2:=", x, y)
    print("width=",x-ix)
    print("height=", y - iy)
    cv2.rectangle(img, (ix, iy), (x, y), (0, 255, 0), 2)

img = cv2.imread("max.png") #加载图片
cv2.namedWindow('image')
cv2.setMouseCallback('image', draw_rectangle)
while(1):
  cv2.imshow('image', img)
  if cv2.waitKey(20) & 0xFF == 27:
    break
cv2.destroyAllWindows()

输出:

point1:= 254 64
point2:= 708 569
width= 454
height= 505

以上这篇opencv3/python 鼠标响应操作详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Selenium鼠标与键盘事件常用操作方法示例

    本文实例讲述了Selenium鼠标与键盘事件常用操作方法.分享给大家供大家参考,具体如下: Selenium是一个用于Web应用程序测试的工具.Selenium测试直接运行在浏览器中,就像真正的用户在操作一样.支持的浏览器包括IE(7, 8, 9, 10, 11),Mozilla Firefox,Safari,Google Chrome,Opera等.这个工具的主要功能包括:测试与浏览器的兼容性--测试你的应用程序看是否能够很好得工作在不同浏览器和操作系统之上.测试系统功能--创建回归测试检验软

  • Python中使用PyHook监听鼠标和键盘事件实例

    PyHook是一个基于Python的"钩子"库,主要用于监听当前电脑上鼠标和键盘的事件.这个库依赖于另一个Python库PyWin32,如同名字所显示的,PyWin32只能运行在Windows平台,所以PyHook也只能运行在Windows平台. 关于PyHook的使用,在它的官方主页上就有一个简单的教程,大体上来说,可以这样使用 # -*- coding: utf-8 -*- # 3import pythoncom 4import pyHook 5def onMouseEvent(e

  • python模拟鼠标点击和键盘输入的操作

    所有代码都是网上百度出来的,通过个人实践找到适合自己的. 采用的python 库是 pymouse.pykeyboard 安装时直接pip安装的,pip install PyUserInput 安装不成功的可以参照http://www.lfd.uci.edu/~gohlke/pythonlibs/这个地址,内容很全 实现了一个最简单的输入密码,enter进入的登录过程 如果想遍历,可以使用itertools 包,很有用,具体用法这里不介绍了. · 鼠标点击 有m.click(x, y, butt

  • Python-OpenCV基本操作方法详解

    基本属性 cv2.imread(文件名,属性) 读入图像 属性:指定图像用哪种方式读取文件 cv2.IMREAD_COLOR:读入彩色图像,默认参数,Opencv 读取彩色图像为BGR模式 !!!注意 cv2.IMREAD_GRAYSCALE:读入灰度图像. cv2.imshow(窗口名,图像文件) 显示图像 可以创建多个窗口 cv2.waitKey() 键盘绑定函数 函数等待特定的几毫秒,看是否由键盘输入. cv2.namedWindow(窗口名,属性) 创建一个窗口 属性:指定窗口大小模式

  • opencv3/python 鼠标响应操作详解

    鼠标回调函数: def setMouseCallback( windowName, #窗口名称 onMouse, #鼠标响应处理函数 param=None) #处理函数的ID event鼠标事件: event: EVENT_LBUTTONDBLCLK = 7 左键双击 EVENT_LBUTTONDOWN = 1 左键点击 EVENT_LBUTTONUP = 4 左键释放 EVENT_MBUTTONDBLCLK = 9 中间释放 EVENT_MBUTTONDOWN = 3 中间点击 EVENT_M

  • opencv3/Python 稠密光流calcOpticalFlowFarneback详解

    光流是由物体或相机的运动引起的图像对象在两个连续帧之间的视在运动模式.光流方法计算在t和 t+Δtt+Δt时刻拍摄的两个图像帧之间的每个像素的运动位置.这些方法被称为差分,因为它们基于图像信号的局部泰勒级数近似; 也就是说,它们使用关于空间和时间坐标的偏导数. 和稀疏光流相比,稠密光流不仅仅是选取图像中的某些特征点(一般用角点)进行计算;而是对图像进行逐点匹配,计算所有点的偏移量,得到光流场,从而进行配准.因此其计算量会显著大于稀疏光流,但效果一般优于稀疏光流. 函数: def calcOpti

  • opencv3/C++图像像素操作详解

    RGB图像转灰度图 RGB图像转换为灰度图时通常使用: 进行转换,以下尝试通过其他对图像像素操作的方式将RGB图像转换为灰度图像. #include<opencv2/opencv.hpp> #include<math.h> using namespace cv; int main() { //像素操作 Mat src,dst; src = imread("E:/image/image/daibola.jpg"); if(src.empty()) { printf

  • 关于Python字典(Dictionary)操作详解

    目录 一.创建字典 二.访问字典里的值 三.修改字典 四.删除字典元素 五.字典键的特性 六.字典内置函数&方法 Python字典是另一种可变容器模型,且可存储任意类型对象,如字符串.数字.元组等其他容器模型. 一.创建字典 字典由键和对应值成对组成.字典也被称作关联数组或哈希表.基本语法如下: dict = {'Alice': '2341', 'Beth': '9102', 'Cecil': '3258'} 也可如此创建字典 dict1 = { 'abc': 456 } dict2 = { '

  • Python函数参数操作详解

    本文实例讲述了Python函数参数操作.分享给大家供大家参考,具体如下: 简述 在 Python 中,函数的定义非常简单,满足对应的语法格式要求即可.对于调用者来说,只需关注如何传递正确的参数,以及获取相应的返回值就足够了,无需了解函数的内部实现(除非想学习.跟踪源码). 话虽如此,但对于函数的定义来说,灵活性非常高.除了常规定义的必选参数以外,还支持默认参数.可变参数.以及关键字参数.这样以来,不但能处理复杂的参数,还可以简化调用者的代码. 形参和实参 不止 Python,几乎所有的编程语言都

  • Python计时相关操作详解【time,datetime】

    本文实例讲述了Python计时相关操作.分享给大家供大家参考,具体如下: 内容目录: 1. 时间戳 2. 当前时间 3. 时间差 4. python中时间日期格式化符号 5. 例子 一.时间戳 时间戳是自 1970 年 1 月 1 日(08:00:00 GMT)至当前时间的总秒数.它也被称为 Unix 时间戳(Unix Timestamp),它在unix.c的世界里随处可见:常见形态是浮点数,小数点后面是毫秒.两个时间戳相减就是时间间隔(单位:秒). 例: import time time1 =

  • Python列表常见操作详解(获取,增加,删除,修改,排序等)

    本文实例讲述了Python列表常见操作.分享给大家供大家参考,具体如下: 列表是由一系列按特定顺序排列的元素组成的对象.因为列表通常包含多个元素, 所以建议给列表指定一个表示复数的名称. 我们用方括号( [] ) 来表示列表, 并用逗号来分隔其中的元素. types=['娱乐','体育','科技'] print(types) 运行结果: ['娱乐', '体育', '科技'] 可以看到,打印列表的同时,也会将方括号打印出来. 1 获取元素 要获取列表中的某个元素, 在方括号内指定元素的索引即可:

  • Python 字典(Dictionary)操作详解

    Python字典是另一种可变容器模型,且可存储任意类型对象,如字符串.数字.元组等其他容器模型.一.创建字典字典由键和对应值成对组成.字典也被称作关联数组或哈希表.基本语法如下: 复制代码 代码如下: dict = {'Alice': '2341', 'Beth': '9102', 'Cecil': '3258'} 也可如此创建字典: 复制代码 代码如下: dict1 = { 'abc': 456 };dict2 = { 'abc': 123, 98.6: 37 }; 注意:每个键与值用冒号隔开

  • Python 元组(Tuple)操作详解

    一.创建元组 复制代码 代码如下: tup1 = ('physics', 'chemistry', 1997, 2000);tup2 = (1, 2, 3, 4, 5 );tup3 = "a", "b", "c", "d"; 创建空元组 复制代码 代码如下: tup1 = (); 元组中只包含一个元素时,需要在元素后面添加逗号来消除歧义 复制代码 代码如下: tup1 = (50,); 元组与字符串类似,下标索引从0开始,可以

  • Python Pandas基础操作详解

    目录 数据结构&Series: DataFrame的构建: 索引操作: DataFrame基本操作: 广播运算: 索引增删改查: 字符串元素处理: 数据规整: 总结 数据结构&Series: ''' series {索引 + 数据} 形式 索引是自动生成的 ''' #通过 list 创建 s1 = pd.Series([1, 2, 3, 4, 5]) #通过np数组创建 arr1 = np.arange(10) s2 = pd.Series(arr1) #自定义索引 s2 = pd.Ser

随机推荐