python 离散点图画法的实现

目录
  • 基础代码
  • 改进
  • 再次改进:
  • 又次改进:
  • 改进:----加准确率

基础代码

pred_y = test_output.data.numpy()
pred_y = pred_y.flatten()
print(pred_y, 'prediction number')
print(test_y[:355].numpy(), 'real number')
​
import matplotlib.pyplot as plt
plt.rc("font", family='KaiTi')
plt.figure()
f, axes = plt.subplots(1, 1)
x = np.arange(1, 356)
# axes.plot(x , pred_y)
axes.scatter(x,pred_y, c='r', marker = 'o')
plt.axhline(36.7, c ='g')
axes.set_xlabel("位置点位")
axes.set_ylabel("预测值")
axes.set_title("矫正网络结果")
plt.savefig("result.png")
plt.show()

离散图画法如上所示。

改进

import matplotlib.pyplot as plt
plt.rc("font", family='KaiTi')
plt.figure()
f, axes = plt.subplots(1, 1)
x = np.arange(1, 356)
# axes.plot(x , pred_y)
axes.scatter(x, pred_y, c='r', marker = 'o')
plt.axhline(36.7, c ='g')
axes.set_xlabel("位置点位")
axes.set_ylabel("预测值")
axes.set_title("矫正网络预测结果")
axes.set_ylim((36, 37))
plt.savefig("result.png")
plt.show()

再次改进:

import matplotlib.pyplot as plt
plt.rc("font", family='KaiTi')
plt.figure()
f, axes = plt.subplots(1, 1)
x = np.arange(1, 356)
# axes.plot(x , pred_y)
axes.scatter(x, pred_y, c='r', marker = 'o')
plt.axhline(36.7, c ='g')
axes.set_xlabel("位置点位")
axes.set_ylabel("预测值")
axes.set_title("矫正网络预测结果")
axes.set_ylim((36, 37))
plt.savefig("result.png")
plt.legend(['real', 'predict'], loc='upper left')
plt.show()

又次改进:

import matplotlib.pyplot as plt
plt.rc("font", family='KaiTi')
plt.figure()
f, axes = plt.subplots(1, 1)
x = np.arange(1, 356)
# axes.plot(x , pred_y)
axes.scatter(x, pred_y, c='r', s=3, marker = 'o')
plt.axhline(36.7, c ='g')
axes.set_xlabel("位置点位")
axes.set_ylabel("预测值")
axes.set_title("矫正网络预测结果")
axes.set_ylim((36, 37))
plt.savefig("result.png")
plt.legend(['真实值36.7℃', '预测值'], loc='upper left')
plt.show()

改进:----加准确率

import matplotlib.pyplot as plt
plt.rc("font", family='KaiTi')
plt.figure()
f, axes = plt.subplots(1, 1)
x = np.arange(1, 356)
# axes.plot(x , pred_y)
axes.scatter(x, pred_y, c='r', s=3, marker = 'o')
plt.axhline(36.7, c ='g')
axes.set_xlabel("位置点位")
axes.set_ylabel("预测值")
axes.set_title("矫正网络预测结果")
axes.set_ylim((36, 37))
plt.savefig("result.png")
plt.legend(['真实值36.7℃', '预测值'], loc='upper left')
​
row_labels = ['准确率:']
col_labels = ['数值']
table_vals = [['{:.2f}%'.format(v*100)]]
row_colors = ['gold']
my_table = plt.table(cellText=table_vals, colWidths=[0.1] * 5,
                             rowLabels=row_labels, rowColours=row_colors, loc='best')
plt.show()

到此这篇关于python 离散点图画法的文章就介绍到这了,更多相关python 离散点图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python基于pandas绘制散点图矩阵代码实例

    1.示例 1 代码 import numpy as np import pandas as pd import matplotlib.pyplot as plt # 生成数据 v1 = np.random.normal(0, 1, 100) v2 = np.random.randint(0, 23, 100) v3 = v1 * v2 # 3*100 的数据框 df = pd.DataFrame([v1, v2, v3]).T # 绘制散点图矩阵 pd.plotting.scatter_matr

  • Python matplotlib实现散点图的绘制

    目录 一.整理数据 二.修改点的样式 三.呈现半透明的状态 四.点呈现多彩的颜色 五.让点的大小不一 六.侧边呈现颜色卡 七.改变集中性 一.整理数据 import pandas as pd cnbodf=pd.read_excel('cnboo1.xlsx') cnbodfsort=cnbodf.sort_values(by=['BO'],ascending=False) def mkpoints(x,y): return len(str(x))*(y/25)-3 cnbodfsort['po

  • python散点图的绘制

    目录 一.二维散点图的绘制 1.采用pandas.plotting.scatter_matrix函数绘制 2. 采用seaborn进行绘制 二. 三维散点图绘制 一.二维散点图的绘制 1.采用pandas.plotting.scatter_matrix函数绘制 pd.plotting.scatter_matrix(iris_data, figsize=(10, 10), alpha=1, hist_kwds={"bins": 20}) 2. 采用seaborn进行绘制   # No.

  • Python matplotlib 绘制散点图详解建议收藏

    目录 前言 1. 散点图概述 什么是散点图? 散点图使用场景 绘制散点图步骤 案例展示  2. 散点图属性 设置散点大小 设置散点颜色 设置散点样式 设置透明度 设置散点边框 3. 添加折线散点图 4. 多类型散点图 5. 颜色条散点图 6. 曲线散点图 总结 前言 我们在matplotlib模块学习中,发现有常用的反映数据变化的折线图,对比数据类型差异的柱状图和反应数据频率分布情况的直方图. 其实在数据统计图表中,有一种图表是散列点分布在坐标中,反应数据随着自变量变化的趋势. 本期,我们将详细

  • python绘制地震散点图

    本项目是利用五年左右的世界地震数据,通过python的pandas库.matplotlib库.basemap库等进行数据可视化,绘制出地震散点图.主要代码如下所示 from __future__ import division import pandas as pd from pandas import Series,DataFrame import numpy as np from matplotlib.patches import Polygon chi_provinces = ['北京',

  • python matplotlib库绘制散点图例题解析

    假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温随时间(天)变化的某种规律? a = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23] b = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,

  • Python使用matplotlib 模块scatter方法画散点图示例

    本文实例讲述了Python使用matplotlib 模块scatter方法画散点图.分享给大家供大家参考,具体如下: # -*-coding:utf-8-*- import matplotlib.pyplot as plt y = [12, 7, 1, 2, 6, 3, 7, 5, 12, 6, 14, 10, 6, 7, 1, 2, 9, 3, 4, 4, 4, 5, 4, 6, 9, 5, \ 2, 1, 2, 1, 7, 6, 43, 15, 18, 52, 39, 53, 39, 17,

  • Python绘制散点图的教程详解

    少废话,直接上代码 import matplotlib.pyplot as plt import numpy as np # 1. 首先是导入包,创建数据 n = 10 x = np.random.rand(n) * 2# 随机产生10个0~2之间的x坐标 y = np.random.rand(n) * 2# 随机产生10个0~2之间的y坐标 # 2.创建一张figure fig = plt.figure(1) # 3. 设置颜色 color 值[可选参数,即可填可不填],方式有几种 # col

  • Python利用matplotlib绘制散点图的新手教程

    前言 上篇文章介绍了使用matplotlib绘制折线图,参考:https://www.jb51.net/article/198991.htm,本篇文章继续介绍使用matplotlib绘制散点图. 一.matplotlib绘制散点图 # coding=utf-8 import matplotlib.pyplot as plt years = [2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019] turnovers =

  • python 离散点图画法的实现

    目录 基础代码 改进 再次改进: 又次改进: 改进:----加准确率 基础代码 pred_y = test_output.data.numpy() pred_y = pred_y.flatten() print(pred_y, 'prediction number') print(test_y[:355].numpy(), 'real number') ​ import matplotlib.pyplot as plt plt.rc("font", family='KaiTi') pl

  • python 贪心算法的实现

    贪心算法 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解. 贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关. 基本思路 思想 贪心算法的基本思路是从问题的某一个初始解出发一步一步地进行,根据某个优化测度,每一步都要确保能获得局部最优解.每一步只考虑一个数据,他的选取应该满足局部优化的条件.若

  • python em算法的实现

    ''' 数据集:伪造数据集(两个高斯分布混合) 数据集长度:1000 ------------------------------ 运行结果: ---------------------------- the Parameters set is: alpha0:0.3, mu0:0.7, sigmod0:-2.0, alpha1:0.5, mu1:0.5, sigmod1:1.0 ---------------------------- the Parameters predict is: al

  • python 决策树算法的实现

    ''' 数据集:Mnist 训练集数量:60000 测试集数量:10000 ------------------------------ 运行结果:ID3(未剪枝) 正确率:85.9% 运行时长:356s ''' import time import numpy as np def loadData(fileName): ''' 加载文件 :param fileName:要加载的文件路径 :return: 数据集和标签集 ''' # 存放数据及标记 dataArr = []; labelArr

  • 详解Python查找算法的实现(线性、二分、分块、插值)

    目录 1. 线性查找 2. 二分查找 3. 插值查找 4. 分块查找 5. 总结 查找算法是用来检索序列数据(群体)中是否存在给定的数据(关键字),常用查找算法有: 线性查找:线性查找也称为顺序查找,用于在无序数列中查找. 二分查找:二分查找也称为折半查找,其算法用于有序数列. 插值查找:插值查找是对二分查找算法的改进. 分块查找:又称为索引顺序查找,它是线性查找的改进版本. 树表查找:树表查找又可分二叉查找树.平衡二叉树查找. 哈希查找:哈希查找可以直接通过关键字查找到所需要数据. 因树表查找

  • 详解Python排序算法的实现(冒泡,选择,插入,快速)

    目录 1. 前言 2. 冒泡排序算法 2.1 摆擂台法 2.2 相邻两个数字相比较 3. 选择排序算法 4. 插入排序 5. 快速排序 6. 总结 1. 前言 所谓排序,就是把一个数据群体按个体数据的特征按从大到小或从小到大的顺序存放. 排序在应用开发中很常见,如对商品按价格.人气.购买数量……显示. 初学编程者,刚开始接触的第一个稍微有点难理解的算法应该是排序算法中的冒泡算法. 我初学时,“脑思维”差点绕在 2 个循环结构的世界里出不来了.当时,老师要求我们死记冒泡的口诀,虽然有点搞笑,但是当

  • python冒泡排序算法的实现代码

    1.算法描述:(1)共循环 n-1 次(2)每次循环中,如果 前面的数大于后面的数,就交换(3)设置一个标签,如果上次没有交换,就说明这个是已经好了的. 2.python冒泡排序代码 复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*- def bubble(l):    flag = True    for i in range(len(l)-1, 0, -1):        if flag:             flag = False

  • python插入排序算法的实现代码

    1.算法:设有一组关键字{ K 1 , K 2 ,-, K n }:排序开始就认为 K 1 是一个有序序列:让 K 2 插入上述表长为 1 的有序序列,使之成为一个表长为 2 的有序序列:然后让 K 3 插入上述表长为 2 的有序序列,使之成为一个表长为 3 的有序序列:依次类推,最后让 K n 插入上述表长为 n-1 的有序序列,得一个表长为 n 的有序序列. 2.python插入排序代码 复制代码 代码如下: def insertion_sort(list2):    for i in ra

  • python实现拓扑排序的基本教程

    拓扑排序 几乎在所有的项目,甚至日常生活,待完成的不同任务之间通常都会存在着某些依赖关系,这些依赖关系会为它们的执行顺序行程表部分约束.对于这种依赖关系,很容易将其表示成一个有向无环图(Directed Acyclic Graph,DAG,无环是一个重要条件),并将寻找其中依赖顺序的过程称为拓扑排序(topological sorting). 拓扑排序要满足如下两个条件 每个顶点出现且只出现一次. 若A在序列中排在B的前面,则在图中不存在从B到A的路径. 拓扑排序算法 任何无回路的顶点活动网(A

  • Python cookbook(数据结构与算法)实现对不原生支持比较操作的对象排序算法示例

    本文实例讲述了Python实现对不原生支持比较操作的对象排序算法.分享给大家供大家参考,具体如下: 问题:想在同一个类的实例之间做排序,但是它们并不原生支持比较操作. 解决方案:使用内建的sorted()函数可接受一个用来传递可调用对象的参数key,sorted利用该可调用对象返回的待排序对象中的某些值来比较对象. from operator import attrgetter class User: def __init__(self, user_id): self.user_id = use

随机推荐