浅谈Java实现分布式事务的三种方案

一、问题描述

用户支付完成会将支付状态及订单状态保存在订单数据库中,由订单服务去维护订单数据库。由库存服务去维护库存数据库的信息。下图是系统结构图:

如何实现两个分布式服务(订单服务、库存服务)共同完成一件事即订单支付成功自动减库存,这里的关键是如何保证两个分布式服务的事务的一致性。

尝试解决上边的需求,在订单服务中远程调用减库存接口,伪代码如下:

订单支付结果通知方法{

​ 更新支付表中支付状态为“成功”。
​ 远程调用减库存接口减库存。

上边的逻辑说明:

1、更新支付表状态为本地数据库操作。
2、远程调用减库存接口为网络远程调用请求。
3、为保存事务上边两步操作由spring控制事务,当遇到Exception异常则回滚本地数据库操作。

问题如下:

1、如果更新支付表失败则抛出异常,不再执行远程调用,此设想没有问题。
2、如果更新支付表成功,网络远程调用超时会拉长本地数据库事务时间,影响数据库性能。
3、如果更新支付表成功,远程调用减库存成功(减库存数据库commit成功),最后更新支付表commit失败,此时出现操作不一致。

上边的问题涉及到分布式事务控制。

二、分布式事务

2.1、什么是分布式系统

部署在不同结点上的系统通过网络交互来完成协同工作的系统。

比如:充值加积分的业务,用户在充值系统向自己的账户充钱,在积分系统中自己积分相应的增加。充值系统和积分系统是两个不同的系统,一次充值加积分的业务就需要这两个系统协同工作来完成。

2.2、什么是事务

事务是指由一组操作组成的一个工作单元,这个工作单元具有原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)。

原子性:执行单元中的操作要么全部执行成功,要么全部失败。如果有一部分成功一部分失败那么成功的操作要全部回滚到执行前的状态。

一致性:执行一次事务会使用数据从一个正确的状态转换到另一个正确的状态,执行前后数据都是完整的。

隔离性:在该事务执行的过程中,任何数据的改变只存在于该事务之中,对外界没有影响,事务与事务之间是完全的隔离的。只有事务提交后其它事务才可以查询到最新的数据。

持久性:事务完成后对数据的改变会永久性的存储起来,即使发生断电宕机数据依然在。

2.3、什么是本地事务

本地事务就是用关系数据库来控制事务,关系数据库通常都具有ACID特性,传统的单体应用通常会将数据全部存储在一个数据库中,会借助关系数据库来完成事务控制。

2.4、什么是分布式事务

在分布式系统中一次操作由多个系统协同完成,这种一次事务操作涉及多个系统通过网络协同完成的过程称为分布式事务。这里强调的是多个系统通过网络协同完成一个事务的过程,并不强调多个系统访问了不同的数据库,即使多个系统访问的是同一个数据库也是分布式事务,如下图:

另外一种分布式事务的表现是,一个应用程序使用了多个数据源连接了不同的数据库,当一次事务需要操作多个数据源,此时也属于分布式事务,当系统作了数据库拆分后会出现此种情况。

分布式事务有哪些应用场景:

电商系统中的下单扣库存

电商系统中,订单系统和库存系统是两个系统,一次下单的操作由两个系统协同完成

2)金融系统中的银行卡充值
在金融系统中通过银行卡向平台充值需要通过银行系统和金融系统协同完成。

3)教育系统中下单选课业务
在线教育系统中,用户购买课程,下单支付成功后学生选课成功,此事务由订单系统和选课系统协同完成。

4) SNS系统的消息发送
在社交系统中发送站内消息同时发送手机短信,一次消息发送由站内消息系统和手机通信系统协同完成。

三、如何进行分布式事务控制

3.1、CAP理论

CAP理论是分布式事务处理的理论基础:分布式系统在设计时只能在一致性(Consistency)、可用性(Availability)、分区容忍性(PartitionTolerance)中满足两种,无法兼顾三种。

一致性(Consistency):服务A、B、C三个结点都存储了用户数据, 三个结点的数据需要保持同一时刻数据一致性。

可用性(Availability):服务A、B、C三个结点,其中一个结点宕机不影响整个集群对外提供服务,如果只有服务A结点,当服务A宕机整个系统将无法提供服务,增加服务B、C是为了保证系统的可用性。

分区容忍性(Partition Tolerance):分区容忍性就是允许系统通过网络协同工作,分区容忍性要解决由于网络分区导致数据的不完整及无法访问等问题。

分布式系统不可避免的出现了多个系统通过网络协同工作的场景,结点之间难免会出现网络中断、网延延迟等现象,这种现象一旦出现就导致数据被分散在不同的结点上,这就是网络分区

3.2、分布式系统如果兼顾CAP

在保证分区容忍性的前提下一致性和可用性无法兼顾,如果要提高系统的可用性就要增加多个结点,如果要保证数据的一致性就要实现每个结点的数据一致,结点越多可用性越好,但是数据一致性越差。

所以,在进行分布式系统设计时,同时满足“一致性”、“可用性”和“分区容忍性”三者是几乎不可能的。

CAP有哪些组合方式?

1.CA:放弃分区容忍性,加强一致性和可用性,关系数据库按照CA进行设计。

2.AP:放弃一致性,加强可用性和分区容忍性,追求最终一致性,很多NoSQL数据库按照AP进行设计。
说明:这里放弃一致性是指放弃强一致性,强一致性就是写入成功立刻要查询出最新数据。追求最终一致性是指允许暂时的数据不一致,只要最终在用户接受的时间内数据 一致即可。

3.CP:放弃可用性,加强一致性和分区容忍性,一些强一致性要求的系统按CP进行设计,比如跨行转账,一次转账请求要等待双方银行系统都完成整个事务才算完成。说明:由于网络问题的存在CP系统可能会出现待等待超时,如果没有处理超时问题则整理系统会出现阻塞。

总结

​ 在分布式系统设计中AP的应用较多,即保证分区容忍性和可用性,牺牲数据的强一致性(写操作后立刻读取到最新数据),保证数据最终一致性。比如:订单退款,今日退款成功,明日账户到账,只要在预定的用户可以接受的时间内退款事务走完即可。

四、分布式事务一致性解决方案

4.1、两阶段提交协议(2PC)

​ 为解决分布式系统的数据一致性问题出现了两阶段提交协议(2 Phase Commitment Protocol),两阶段提交由协调者和参与者组成,共经过两个阶段和三个操作,部分关系数据库如Oracle、MySQL支持两阶段提交协议,本节讲解关系数据库两阶段提交协议。

参考:

2PC:https://en.wikipedia.org/wiki/Two-phase_commit_protocol

2PC协议流程图

1)第一阶段:准备阶段(prepare)
协调者通知参与者准备提交订单,参与者开始投票。
参与者完成准备工作向协调者回应Yes|NO。

2)第二阶段:提交(commit)/回滚(rollback)阶段
协调者根据参与者的投票结果发起最终的提交指令。
如果有参与者没有准备好则发起回滚指令。

一个下单减库存的例子:

1、应用程序连接两个数据源。

2、应用程序通过事务协调器向两个库发起prepare,两个数据库收到消息分别执行本地事务(记录日志),但不提交,如果执行成功则回复yes,否则回复no。

3、事务协调器收到回复,只要有一方回复no则分别向参与者发起回滚事务,参与者开始回滚事务。

4、事务协调器收到回复,全部回复yes,此时向参与者发起提交事务。如果参与者有一方提交事务失败则由事务协调器发起回滚事务。

2PC的优点:实现强一致性,部分关系数据库支持(Oracle、MySQL等)。

缺点:整个事务的执行需要由协调者在多个节点之间去协调,增加了事务的执行时间,性能低下。

解决方案有:springboot+Atomikos or Bitronix

3PC主要是解决协调者与参与者通信阻塞问题而产生的,它比2PC传递的消息还要多,性能不高。

详细参考3PC:

https://en.wikipedia.org/wiki/Three-phase_commit_protocol

4.2、事务补偿 TCC

TCC事务补偿是基于2PC实现的业务层事务控制方案,它是Try、Confirm和Cancel三个单词的首字母,含义如下:

1、Try 检查及预留业务资源完成提交事务前的检查,并预留好资源。
2、Confirm确定执行业务操作对try阶段预留的资源正式执行。
3、Cancel取消执行业务操作对try阶段预留的资源释放。

下边用一个下单减库存的业务为例来说明:

1、Try

下单业务由订单服务和库存服务协同完成,在try阶段订单服务和库存服务完成检查和预留资源。
订单服务检查当前是否满足提交订单的条件(比如:当前存在未完成订单的不允许提交新订单)。
库存服务检查当前是否有充足的库存,并锁定资源。

2、Confirm

订单服务和库存服务成功完成Try后开始正式执行资源操作。
订单服务向订单写一条订单信息。
库存服务减去库存。

3、Cancel

如果订单服务和库存服务有一方出现失败则全部取消操作。
订单服务需要删除新增的订单信息。
库存服务将减去的库存再还原。
优点:最终保证数据的一致性,在业务层实现事务控制,灵活性好。
缺点:开发成本高,每个事务操作每个参与者都需要实现try/confirm/cancel三个接口。

注意:TCC的try/confirm/cancel接口都要实现幂等性,在为在try、confirm、cancel失败后要不断重试。

什么是幂等性?

幂等性是指同一个操作无论请求多少次,其结果都相同。
幂等操作实现方式有:

1、操作之前在业务方法进行判断如果执行过了就不再执行。
2、缓存所有请求和处理的结果,已经处理的请求则直接返回结果。
3、在数据库表中加一个状态字段(未处理,已处理),数据操作时判断未处理时再处理。

4.3、消息队列实现最终一致性

本方案是将分布式事务拆分成多个本地事务来完成,并且由消息队列异步协调完成,如下图:
下边以下单减少库存为例来说明:

可以把MQ去掉不使用MQ

1、订单服务和库存服务完成检查和预留资源。
2、订单服务在本地事务中完成添加订单表记录和添加“减少库存任务消息”。
3、由定时任务根据消息表的记录发送给MQ通知库存服务执行减库存操作。
4、库存服务执行减少库存,并且记录执行消息状态(为避免重复执行消息,在执行减库存之前查询是否执行过此消息)。
5、库存服务向MQ发送完成减少库存的消息。
6、订单服务接收到完成库存减少的消息后删除原来添加的“减少库存任务消息”。
实现最终事务一致要求:预留资源成功理论上要求正式执行成功,如果执行失败会进行重试,要求业务执行方法实现幂等。

优点 :

由MQ按异步的方式协调完成事务,性能较高。
不用实现try/confirm/cancel接口,开发成本比TCC低。

缺点:

此方式基于关系数据库本地事务来实现,会出现频繁读写数据库记录,浪费数据库资源,另外对于高并发操作不是最佳方案。

以上就是浅谈Java实现分布式事务的三种方案的详细内容,更多关于Java 分布式事务的资料请关注我们其它相关文章!

(0)

相关推荐

  • Java中JDBC事务与JTA分布式事务总结与区别

    Java事务的类型有三种:JDBC事务.JTA(Java Transaction API)事务.容器事务.常见的容器事务如Spring事务,容器事务主要是J2EE应用服务器提供的,容器事务大多是基于JTA完成,这是一个基于JNDI的,相当复杂的API实现.所以本文暂不讨论容器事务.本文主要介绍J2EE开发中两个比较基本的事务:JDBC事务和JTA事务. JDBC事务 JDBC的一切行为包括事务是基于一个Connection的,在JDBC中是通过Connection对象进行事务管理.在JDBC中,

  • spring整合atomikos实现分布式事务的方法示例

    前言 Atomikos 是一个为Java平台提供增值服务的并且开源类事务管理器,主要用于处理跨数据库事务,比如某个指令在A库和B库都有写操作,业务上要求A库和B库的写操作要具有原子性,这时候就可以用到atomikos.笔者这里整合了一个spring和atomikos的demo,并且通过案例演示说明atomikos的作用. 准备工作 开发工具:idea 数据库:mysql , oracle 正文 源码地址: https://github.com/qw870602/atomikos 演示原理:通过在

  • SpringBoot+Dubbo+Seata分布式事务实战详解

    前言 Seata 是 阿里巴巴开源的分布式事务中间件,以高效并且对业务0侵入的方式,解决微服务场景下面临的分布式事务问题. 事实上,官方在GitHub已经给出了多种环境下的Seata应用示例项目,地址:https://github.com/seata/seata-samples. 为什么笔者要重新写一遍呢,主要原因有两点: 官网代码示例中,依赖太多,分不清哪些有什么作用 Seata相关资料较少,笔者在搭建的过程中,遇到了一些坑,记录一下 一.环境准备 本文涉及软件环境如下: SpringBoot

  • 详解Spring Boot微服务如何集成fescar解决分布式事务问题

    什么是fescar? 关于fescar的详细介绍,请参阅fescar wiki. 传统的2PC提交协议,会持有一个全局性的锁,所有局部事务预提交成功后一起提交,或有一个局部事务预提交失败后一起回滚,最后释放全局锁.锁持有的时间较长,会对并发造成较大的影响,死锁的风险也较高. fescar的创新之处在于,每个局部事务执行完立即提交,释放本地锁:它会去解析你代码中的sql,从数据库中获得事务提交前的事务资源即数据,存放到undo_log中,全局事务协调器在回滚的时候直接使用undo_log中的数据覆

  • 详解SpringBoot基于Dubbo和Seata的分布式事务解决方案

    1. 分布式事务初探 一般来说,目前市面上的数据库都支持本地事务,也就是在你的应用程序中,在一个数据库连接下的操作,可以很容易的实现事务的操作. 但是目前,基于SOA的思想,大部分项目都采用微服务架构后,就会出现了跨服务间的事务需求,这就称为分布式事务. 本文假设你已经了解了事务的运行机制,如果你不了解事务,那么我建议先去看下事务相关的文章,再来阅读本文. 1.1 什么是分布式事务 对于传统的单体应用而言,实现本地事务可以依赖Spring的@Transactional注解标识方法,实现事务非常简

  • SQLServer分布式事务问题

    一. 问题现象 在执行 SQL Server分布式事务时,在SQL Server 2005下收到如下错误: 消息 7391,级别 16,状态 2,过程 xxxxx,第 16 行 无法执行该操作,因为链接服务器 "xxxxx" 的 OLE DB 访问接口 "SQLNCLI" 无法启动分布式事务. 在SQL Server 2000下收到如下错误: 该操作未能执行,因为 OLE DB 提供程序 'SQLOLEDB' 无法启动分布式事务. [OLE/DB provider

  • C#分布式事务的超时处理实例分析

    本文实例讲述了C#分布式事务的超时处理的方法.分享给大家供大家参考.具体分析如下: 事务是个很精妙的存在,我们在数据层.服务层.业务逻辑层等多处地方都会使用到. 在这里我只说下TransactionScope这个微软推荐使用的隐式事务.它是从Framework 2.0开始引入的一个事务管理类,在使用隐式事务时,事务完成前 程序应调用TransactionScope的Complete()方法,将事务提交,然后利用Dispose()释放事务对象.若执行期间出现错误,事务将自动回滚. 比如: usin

  • 详解Java TCC分布式事务实现原理

    概述 之前网上看到很多写分布式事务的文章,不过大多都是将分布式事务各种技术方案简单介绍一下.很多朋友看了还是不知道分布式事务到底怎么回事,在项目里到底如何使用. 所以这篇文章,就用大白话+手工绘图,并结合一个电商系统的案例实践,来给大家讲清楚到底什么是 TCC 分布式事务. 业务场景介绍 咱们先来看看业务场景,假设你现在有一个电商系统,里面有一个支付订单的场景. 那对一个订单支付之后,我们需要做下面的步骤: 更改订单的状态为"已支付" 扣减商品库存 给会员增加积分 创建销售出库单通知仓

  • 浅谈Java实现分布式事务的三种方案

    一.问题描述 用户支付完成会将支付状态及订单状态保存在订单数据库中,由订单服务去维护订单数据库.由库存服务去维护库存数据库的信息.下图是系统结构图: 如何实现两个分布式服务(订单服务.库存服务)共同完成一件事即订单支付成功自动减库存,这里的关键是如何保证两个分布式服务的事务的一致性. 尝试解决上边的需求,在订单服务中远程调用减库存接口,伪代码如下: 订单支付结果通知方法{ ​ 更新支付表中支付状态为"成功". ​ 远程调用减库存接口减库存. } 上边的逻辑说明: 1.更新支付表状态为本

  • 浅谈java中math类中三种取整函数的区别

    math类中三大取整函数 1.ceil 2.floor 3.round 其实三种取整函数挺简单的.只要记住三个函数名翻译过来的汉语便能轻松理解三大函数,下面一一介绍 1.ceil,意思是天花板,java中叫做向上取整,大于等于该数字的最接近的整数 例: math.ceil(13.2)=14 math.ceil(-13.2)=-13 2.floor,意思是地板,java中叫做向下取整,小于等于该数字的最接近的整数 例: math.floor(13.2)=13 math.floor(-13.2)=-

  • 浅谈MySQL8.0 异步复制的三种方式

    本实验中分别针对空库.脱机.联机三种方式,配置一主两从的mysql标准异步复制.只做整服务器级别的复制,不考虑对个别库表或使用过滤复制的情况. 实验环境 [root@slave2 ~]# cat /etc/hosts 192.168.2.138 master 192.168.2.192 slave1 192.168.2.130 slave2 mysql> select version(); +-----------+ | version() | +-----------+ | 8.0.16 |

  • 浅谈Redis对于过期键的三种清除策略

    目录 Pre Redis Key的超时设置处理 被动删除 主动删除 当前已用内存超过maxmemory限定时,触发主动清理策略 对于过期键一般有三种删除策略 定时删除:在设置键的过期时间的同时,创建一个定时器(timer),让定时器在键的过期时间来临时,立即执行对键的删除操作: 惰性删除:放任键过期不管,但是每次从键空间中获取键时,都检查取得的键是否过期,如果过期的话,就删除该键:如果没有过期,那就返回该键: 定期删除:每隔一段时间,程序就对数据库进行一次检查,删除里面的过期键.至于删除多少过期

  • 浅谈Redis处理接口幂等性的两种方案

    目录 一.接口幂等性 1.1.什么是接口幂等性 1.2.为什么需要实现幂等性 1.3.引入幂等性后对系统的影响 二.如何设计幂等 2.1.全局的唯一性ID 2.2.幂等设计的基本流程 三.接口幂等性常见解决方案 3.1.下游传递唯一请求编号 3.2.防重 Token 令牌 参考链接: 前言:接口幂等性问题,对于开发人员来说,是一个跟语言无关的公共问题.对于一些用户请求,在某些情况下是可能重复发送的,如果是查询类操作并无大碍,但其中有些是涉及写入操作的,一旦重复了,可能会导致很严重的后果,例如交易

  • 浅谈数据库缓存最终一致性的四种方案

    背景 缓存是软件开发中一个非常有用的概念,数据库缓存更是在项目中必然会遇到的场景.而缓存一致性的保证,更是在面试中被反复问到,这里进行一下总结,针对不同的要求,选择恰到好处的一致性方案. 缓存是什么 存储的速度是有区别的.缓存就是把低速存储的结果,临时保存在高速存储的技术. 如图所示,金字塔更上面的存储,可以作为下面存储的缓存. 我们本次的讨论,主要针对数据库缓存场景,将以redis作为mysql的缓存为案例来进行. 为什么需要缓存 存储如mysql通常支持完整的ACID特性,因为可靠性,持久性

  • 浅谈Spring解决循环依赖的三种方式

    引言:循环依赖就是N个类中循环嵌套引用,如果在日常开发中我们用new 对象的方式发生这种循环依赖的话程序会在运行时一直循环调用,直至内存溢出报错.下面说一下Spring是如果解决循环依赖的. 第一种:构造器参数循环依赖 表示通过构造器注入构成的循环依赖,此依赖是无法解决的,只能抛出BeanCurrentlyIn CreationException异常表示循环依赖. 如在创建TestA类时,构造器需要TestB类,那将去创建TestB,在创建TestB类时又发现需要TestC类,则又去创建Test

  • 浅谈Android Studio 解析XML的三种方法

    一丶概述 文件解析要求,json解析和xml解析,前面文章说过Json转实体类,这里就说说解析XML 内容: Android Studio 解析XML常见的三种方式:DOM PULL SAX (实现XML转实体类并打印输出) 效果演示: 二丶正文 SAX(Simple API for XML) 使用流式处理的方式,它并不记录所读内容的相关信息.它是一种以事件为驱动的XML API,解析速度快,占用内存少.使用回调函数来实现. 缺点是不能倒退. DOM(Document Object Model)

  • 浅谈Java中实现深拷贝的两种方式—clone() & Serialized

    clone() 方法麻烦一些,需要将所有涉及到的类实现声明式接口 Cloneable,并覆盖Object类中的clone()方法,并设置作用域为public(这是为了其他类可以使用到该clone方法). 序列化的方法简单,需要将所有涉及到的类实现接口Serializable package b1ch06.clone; import java.io.Serializable; class Car implements Cloneable, Serializable { private String

  • 浅谈.net core 注入中的三种模式:Singleton、Scoped 和 Transient

    从上篇内容不如题的文章<.net core 并发下的线程安全问题>扩展认识.net core注入中的三种模式:Singleton.Scoped 和 Transient 我们都知道在 Startup 的ConfigureServices 可以注入我们想要的服务,那么在注入的时候有三种模式可以选择,那么我们在什么时候选择什么样的模式呢? 在讲注入模式之前,我觉得很有必要了解服务生存期的概念! 服务生存期:ASP.NET Core 提供了一个内置的服务容器 IServiceProvider负责管理服

随机推荐