学会Python数据可视化必须尝试这7个库

目录
  • 一、Seaborn
  • 二、Plotly
  • 三、Geoplotlib
  • 四、Gleam
  • 五、ggplot
  • 六、Bokeh
  • 七、Missingo

一、Seaborn

Seaborn 建于 matplotlib 库的之上。它有许多内置函数,使用这些函数,只需简单的代码行就可以创建漂亮的绘图。它提供了多种高级的可视化绘图和简单的语法,如方框图、小提琴图、距离图、关节图、成对图、热图等。

安装

ip install seaborn

主要特征:

  • 可用于确定两个变量之间的关系。
  • 在分析单变量或双变量分布时进行区分。
  • 绘制因变量的线性回归模型。
  • 提供多网格绘图

只需使用几行简单代码就可以绘制出漂亮的图形

官方文档

https://seaborn.pydata.org/

二、Plotly

Plotly 是一个高级 Python 分析库,有助于构建交互式仪表板。使用 Plotly 构建的图形是交互式图形,这意味着你可以轻松找到图形的任何特定点或会话的值。Plotly 生成仪表板并将其部署在服务器上变得非常容易。它支持 Python、R 和 Julia 编程语言。

Plotly 制作简单散点图的代码:

官方文档

https://dash.plotly.com/

三、Geoplotlib

Geoplotlib 是一个用于可视化地理数据和制作地图的 Python 工具箱。你可以使用此库创建各种地图。您可以使用它创建的一些地图示例包括热图、点密度图、地理地图等等。

安装

pip install geoplotlib

github文档

https://github.com/andrea-cuttone/geoplotlib/wiki/User-Guide

四、Gleam

Gleam 的灵感来自 R 的Shiny包。它允许你仅使用 Python 代码将图形转换为出色的 Web 应用程序。这对不了解 HTML 和 CSS 的人很有帮助。它不是真正的可视化库,而是与任何可视化库一起使用。

github文档

https://github.com/dgrtwo/gleam

五、ggplot

ggplot 的工作方式与 matplotlib 不同。它允许你添加多个组件作为图层,以在最后创建完整的图形或绘图。例如,在开始时你可以添加一个轴,然后添加点和其他组件,如趋势线。

%matplotlib inline
from ggplot import *
ggplot(diamonds, aes(x='price', fill='clarity')) + geom_histogram()

github文档

https://github.com/tidyverse/ggplot2

六、Bokeh

Bokeh 库由Continuum Analytics创建,用于生成对 Web 界面和浏览器友好的可视化。Bokeh 生成的可视化本质上是交互式的,可让你传达更多信息。

# Bokeh Libraries
from bokeh.io import output_file
from bokeh.plotting import figure, show

# The figure will be rendered in a static HTML file called output_file_test.html
output_file('output_file_test.html',
            title='Empty Bokeh Figure')

# Set up a generic figure() object
fig = figure()

# See what it looks like
show(fig)

官方文档

https://docs.bokeh.org/en/latest/

七、Missingo

数据科学就是从给定的数据中找到有用的信息,并使之对所有人可见。 最好的方法是将数据可视化。对于所有的数据科学家爱好者来说,这个包可能是一个热潮。它可以帮助你找到所有缺失值,并在现实世界的数据集中以漂亮的图形方式显示它们,而无需头疼,只需一行代码。 它支持图形表示,如条形图、图表、热图、树状图等。

# Importing Necessary Libraries
import pandas as pd
import missingno as mi

# Reading the Titanic dataset (From Local Env)
data = pd.read_csv("train.csv")

# Checking missing values Using ()
print(data.isnull().sum()) ## It will display a table with all the missing values

### The best practice is to visualize this so that everyone even a non-tech person
### can understand and find the missing values, Let's use the `missingno` package
#Visualizing using missingno

print("Visualizing missing value using bar graph")
print(mi.bar(data, figsize = (10,5)))

到此这篇关于Python数据可视化必须尝试这7个库的文章就介绍到这了,更多相关Python数据可视化库内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python数据可视化:箱线图多种库画法

    概念 箱线图通过数据的四分位数来展示数据的分布情况.例如:数据的中心位置,数据间的离散程度,是否有异常值等. 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分别为数据的第25%,50%和75%的数字. 四分位间距(Interquartilerange(IQR))=上分位数(upper quartile)-下分位数(lower quartile) 箱线图分为两部分,分别是箱(box)和须(whisker).箱(box)用来表示从第一分位到第三分位的数

  • Python数据可视化库seaborn的使用总结

    seaborn是python中的一个非常强大的数据可视化库,它集成了matplotlib,下图为seaborn的官网,如果遇到疑惑的地方可以到官网查看.http://seaborn.pydata.org/ 从官网的主页我们就可以看出,seaborn在数据可视化上真的非常强大. 1.首先我们还是需要先引入库,不过这次要用到的python库比较多. import numpy as np import pandas as pd import matplotlib as mpl import matpl

  • Python中seaborn库之countplot的数据可视化使用

    在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是seaborn库中分类图的一种,作用是使用条形显示每个分箱器中的观察计数.接下来,对seaborn中的countplot方法进行详细的一个讲解,希望可以帮助到刚入门的同行. 导入seaborn库 import seaborn as sns 使用countplot sns.countplot() cou

  • python使用pyecharts库画地图数据可视化的实现

    python使用pyecharts库画地图数据可视化导库中国地图代码结果世界地图代码结果省级地图代码结果地级市地图代码结果 导库 from pyecharts import options as opts from pyecharts.charts import Map 中国地图 代码 data = [('湖北', 9074),('浙江', 661),('广东', 632),('河南', 493),('湖南', 463), ('安徽', 340),('江西', 333),('重庆', 275),

  • Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

    python可以在处理各种数据时,如果可以将这些数据,利用图表将其可视化,这样在分析处理起来,将更加直观.清晰,以下是 利用 PyEcharts 常用图表的可视化Demo, 开发环境 python3 柱状图 基本柱状图 from pyecharts import Bar # 基本柱状图 bar = Bar("基本柱状图", "副标题") bar.use_theme('dark') # 暗黑色主题 bar.add('真实成本', # label ["1月&q

  • Python数据可视化:顶级绘图库plotly详解

    有史以来最牛逼的绘图工具,没有之一 plotly是现代平台的敏捷商业智能和数据科学库,它作为一款开源的绘图库,可以应用于Python.R.MATLAB.Excel.JavaScript和jupyter等多种语言,主要使用的js进行图形绘制,实现过程中主要就是调用plotly的函数接口,底层实现完全被隐藏,便于初学者的掌握. 下面主要从Python的角度来分析plotly的绘图原理及方法: ###安装plotly: 使用pip来安装plotly库,如果机器上没有pip,需要先进行pip的安装,这里

  • 学会Python数据可视化必须尝试这7个库

    目录 一.Seaborn 二.Plotly 三.Geoplotlib 四.Gleam 五.ggplot 六.Bokeh 七.Missingo 一.Seaborn Seaborn 建于 matplotlib 库的之上.它有许多内置函数,使用这些函数,只需简单的代码行就可以创建漂亮的绘图.它提供了多种高级的可视化绘图和简单的语法,如方框图.小提琴图.距离图.关节图.成对图.热图等. 安装 ip install seaborn 主要特征: 可用于确定两个变量之间的关系. 在分析单变量或双变量分布时进行

  • Python数据可视化常用4大绘图库原理详解

    今天我们就用一篇文章,带大家梳理matplotlib.seaborn.plotly.pyecharts的绘图原理,让大家学起来不再那么费劲! 1. matplotlib绘图原理 关于matplotlib更详细的绘图说明,大家可以参考下面这篇文章,相信你看了以后一定学得会. matplotlib绘图原理:http://suo.im/678FCo 1)绘图原理说明 通过我自己的学习和理解,我将matplotlib绘图原理高度总结为如下几步: 导库;创建figure画布对象;获取对应位置的axes坐标

  • python数据可视化 – 利用Bokeh和Bottle.py在网页上展示你的数据

    目录 1. 文章重点和项目介绍 2. 数据集研究和图表准备 2.1 导入数据集 2.2 绘制图表 图表1:2019年上海,北京,深圳三地的每天AQI变化曲线 图表2:2019年上海,北京,深圳三地的每月平均AQI对比 图表3:2017年到2019年北京每月平均AQI对比 3. Bottle网页应用 3.1 文件夹结构 3.2 路由 3.3 模板实现 3.4 启动网页服务 4. 将Bokeh和Bottle集成在一起 4.1 模板修改 4.2 Python代码集成 5. 部署应用到Heroku 6.

  • python数据可视化Seaborn绘制山脊图

    目录 1. 引言 2. 举个栗子 3.山脊图 4.扩展 5.结论 1. 引言 山脊图一般由垂直堆叠的折线图组成,这些折线图中的折线区域间彼此重叠,此外它们还共享相同的x轴. 山脊图经常以一种相对不常见且非常适合吸引大家注意力的紧凑图的形式表现.观察上图,我们给其起名叫Ridge plot是非常恰当的,因为上述图表看起来确实很像山的脊背.此外,上述图像还有另一个称呼叫做Joy Plots–这主要是因为Joy Division乐队在如下专辑封面上采用了这种可视化形式. 2. 举个栗子 在介绍完山脊图

  • Python数据可视化之Pyecharts使用详解

    目录 1. 安装Pyecharts 2. 图表基础 2.1 主题风格 2.2 图表标题 2.3 图例 2.4 提示框 2.5 视觉映射 2.6 工具箱 2.7 区域缩放 3. 柱状图 Bar模块 4. 折线图/面积图 Line模块 4.1 折线图 4.2 面积图 5.饼形图 5.1 饼形图 5.2 南丁格尔玫瑰图 6. 箱线图 Boxplot模块 7. 涟漪特效散点图 EffectScatter模块 8. 词云图 WordCloud模块 9. 热力图 HeatMap模块 10. 水球图 Liqu

  • python数据可视化绘制火山图示例

    目录 导入模块 1.读取测试数据 2.查看数据 3.筛选差异基因 4.查看数据,发现多了type这一列 5.统计个数 6.绘火山图 7.保存图片 导入模块 import numpy as np import pandas as pd 1.读取测试数据 data=pd.read_csv(r'E:\ZYH\R.project\rna-seq\lianxi1\exon_level\df.csv') 2.查看数据 data.head() 3.筛选差异基因 # 3.尝试写循环筛选上下调基因分类赋值给 "u

  • 基于Python数据可视化利器Matplotlib,绘图入门篇,Pyplot详解

    Pyplot matplotlib.pyplot是一个命令型函数集合,它可以让我们像使用MATLAB一样使用matplotlib.pyplot中的每一个函数都会对画布图像作出相应的改变,如创建画布.在画布中创建一个绘图区.在绘图区上画几条线.给图像添加文字说明等.下面我们就通过实例代码来领略一下他的魅力. import matplotlib.pyplot as plt plt.plot([1,2,3,4]) plt.ylabel('some numbers') plt.show() 上图是我们通

  • Python数据可视化正态分布简单分析及实现代码

    Python说来简单也简单,但是也不简单,尤其是再跟高数结合起来的时候... 正态分布(Normaldistribution),也称"常态分布",又名高斯分布(Gaussiandistribution),最早由A.棣莫弗在求二项分布的渐近公式中得到.C.F.高斯在研究测量误差时从另一个角度导出了它.P.S.拉普拉斯和高斯研究了它的性质.是一个在数学.物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力. 正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人

  • 详解Python数据可视化编程 - 词云生成并保存(jieba+WordCloud)

    思维导图: 效果(语句版): 源码: # -*- coding: utf-8 -*- """ Created on Tue Mar 5 17:59:29 2019 @author: dell """ # ============================================================================= # 步骤: # 分割aaa = jieba.cut(str,cut_all=True/Fa

随机推荐