浅谈Redis在直播场景的实践方案

背景信息

视频直播间作为直播系统对外的表现形式,是整个系统的核心之一。除了视频直播窗口外,直播间的在线用户、礼物、评论、点赞、排行榜等数据信息时效性高,互动性强,对系统时延有着非常高的要求,非常适合使用Redis缓存服务来处理。
本篇最佳实践将向您展示使用Redis版搭建视频直播间信息系统的示例。您将了解三类信息的构建方法:

  • 实时排行类信息
  • 计数类信息
  • 时间线信息

实时排行类信息

实时排行类信息包含直播间在线用户列表、各种礼物的排行榜、弹幕消息(类似于按消息维度排序的消息排行榜)等,适合使用Redis中的有序集合(sorted set)结构进行存储。
Redis集合使用空值散列表(hash table)实现,因此对集合的增删改查操作的时间复杂度都是O(1)。有序集合中的每个成员都关联一个分数(score),可以方便地实现排序等操作。下面以增加和返回弹幕消息为例对有序集合在直播间信息系统中的实际运用进行说明。

以unix timestamp+毫秒数为分值,记录user55的直播间增加的5条弹幕:

redis> ZADD user55:_danmu 1523959031601166 message111111111111
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959031601266 message222222222222
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959088894232 message33333
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959090390160 message444444
(integer) 1
11.160.24.14:3003> ZADD user55:_danmu 1523959092951218 message5555
(integer) 1

返回最新的3条弹幕信息:

redis> ZREVRANGEBYSCORE user55:_danmu +inf -inf LIMIT 0 3
1) "message5555"
2) "message444444"
3) "message33333"

返回指定时间段内的3条弹幕信息:

redis> ZREVRANGEBYSCORE user55:_danmu 1523959088894232 -inf LIMIT 0 3
1) "message33333"
2) "message222222222222"
3) "message111111111111"

计数类信息

计数类信息以用户相关数据为例,有未读消息数、关注数、粉丝数、经验值等等。这类消息适合以Redis中的散列(hash)结构进行存储。比如关注数可以用如下的方法处理:

redis> HSET user:55 follower 5
(integer) 1
redis> HINCRBY user:55 follower 1 //关注数+1
(integer) 6
redis> HGETALL user:55
1) "follow"
2) "6"

时间线信息

时间线信息是以时间为维度的信息列表,典型有主播动态、新帖等。这类信息是按照固定的时间顺序排列,可以使用列表(list)或者有序列表来存储,示例如下:

redis> LPUSH user:55_recent_activitiy  '{datetime:201804112010,type:publish,title:开播啦,content:加油}'
(integer) 1
redis> LPUSH user:55_recent_activitiy '{datetime:201804131910,type:publish,title:请假,content:抱歉,今天有事鸽一天}'
(integer) 2
redis> LRANGE user:55_recent_activitiy 0 10
1) "{datetime:201804131910,type:publish,title:\xe8\xaf\xb7\xe5\x81\x87\",content:\xe6\x8a\xb1\xe6\xad\x89\xef\xbc\x8c\xe4\xbb\x8a\xe5\xa4\xa9\xe6\x9c\x89\xe4\xba\x8b\xe9\xb8\xbd\xe4\xb8\x80\xe5\xa4\xa9}"
2) "{datetime:201804112010,type:publish,title:\xe5\xbc\x80\xe6\x92\xad\xe5\x95\xa6,content:\xe5\x8a\xa0\xe6\xb2\xb9}"

到此这篇关于浅谈Redis在直播场景的实践方案的文章就介绍到这了,更多相关Redis 直播场景实践内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 使用redis的increment()方法实现计数器功能案例

    一直知道redis可以用来实现计数器功能,但是之前没有实际使用过,昨天碰到一个需求:用户扫码当天达到20次即提示:当日扫码次数达到上限! 当时就想到使用redis的递增方法increment()来实现计数器功能,一定要注意redisTemplate和stringRedisTemplate的使用 首先设置key: 该key我使用了用户id和当天日期作为key的一部分,date:xxxx-xx-xx格式,这样一来该用户在第二天扫码的时候又是一个新key,因为日期不同了 设置key的过期时间: 实现计

  • Redis的使用模式之计数器模式实例

    Redis 是目前 NoSQL 领域的当红炸子鸡,它象一把瑞士军刀,小巧.锋利.实用,特别适合解决一些使用传统关系数据库难以解决的问题.打算写一系列 Redis 使用模式的文章,深入总结介绍 Redis 常见的使用模式,以供大家参考. 常见汇总计数器 汇总计数是系统常见功能,比如网站通常需要统计注册用户数,网站总浏览次数等等. 使用 Redis 提供的基本数据类型就能实现汇总计数器,通过 incr 命令实现增加操作. 比如注册用户数,基本操作命令如下: 复制代码 代码如下: # 获取注册用户数

  • Redis精确去重计数方法(咆哮位图)

    前言 如果要统计一篇文章的阅读量,可以直接使用 Redis 的 incr 指令来完成.如果要求阅读量必须按用户去重,那就可以使用 set 来记录阅读了这篇文章的所有用户 id,获取 set 集合的长度就是去重阅读量.但是如果爆款文章阅读量太大,set 会浪费太多存储空间.这时候我们就要使用 Redis 提供的 HyperLogLog 数据结构来代替 set,它只会占用最多 12k 的存储空间就可以完成海量的去重统计.但是它牺牲了准确度,它是模糊计数,误差率约为 0.81%. 那么有没有一种不怎么

  • redis实现计数器-防止刷单方法介绍

    最近由于双11要来临,公司需要在接口请求上,做一下并发限制的处理,或者做一个防止刷单的安全拦截: 比如:一个接口请求,限制每秒请求总数为200次,超过200次就等待,等下一秒,再次请求,这里用到一个redis作为一个计数器的模式来实现. 调用redis的方法: INCR key 将 key 中储存的数字值增一. 如果 key 不存在,那么 key 的值会先被初始化为 0 ,然后再执行 INCR 操作. 如果值包含错误的类型,或字符串类型的值不能表示为数字,那么返回一个错误. 这是一个针对字符串的

  • Redis原子计数器incr,防止并发请求操作

    一.前言 在一些对高并发请求有限制的系统或者功能里,比如说秒杀活动,或者一些网站返回的当前用户过多,请稍后尝试.这些都是通过对同一时刻请求数量进行了限制,一般用作对后台系统的保护,防止系统因为过大的流量冲击而崩溃.对于系统崩溃带来的后果,显然还是拒绝一部分请求更能被维护者所接受. 而在各种限流中,除了系统自身设计的带锁机制的计数器外,利用Redis实现显然是一种既高效安全又便捷方便的方式. 二.incr命令 Redis Incr 命令将 key 中储存的数字值增一. 如果 key 不存在,那么

  • Redis实现唯一计数的3种方法分享

    唯一计数是网站系统中十分常见的一个功能特性,例如网站需要统计每天访问的人数 unique visitor (也就是 UV).计数问题很常见,但解决起来可能十分复杂:一是需要计数的量可能很大,比如大型的站点每天有数百万的人访问,数据量相当大:二是通常还希望扩展计数的维度,比如除了需要每天的 UV,还想知道每周或每月的 UV,这样导致计算十分复杂. 在关系数据库存储的系统里,实现唯一计数的方法就是 select count(distinct <item_id>),它十分简单,但是如果数据量很大,这

  • Redis实现高并发计数器

    业务需求中经常有需要用到计数器的场景:譬如一个手机号一天限制发送5条短信.一个接口一分钟限制多少请求.一个接口一天限制调用多少次等等.使用Redis的Incr自增命令可以轻松实现以上需求.以一个接口一天限制调用次数为例: /** * 是否拒绝服务 * @return */ private boolean denialOfService(String userId){ long count=JedisUtil.setIncr(DateUtil.getDate()+"&"+user

  • 浅谈Redis在直播场景的实践方案

    背景信息 视频直播间作为直播系统对外的表现形式,是整个系统的核心之一.除了视频直播窗口外,直播间的在线用户.礼物.评论.点赞.排行榜等数据信息时效性高,互动性强,对系统时延有着非常高的要求,非常适合使用Redis缓存服务来处理. 本篇最佳实践将向您展示使用Redis版搭建视频直播间信息系统的示例.您将了解三类信息的构建方法: 实时排行类信息 计数类信息 时间线信息 实时排行类信息 实时排行类信息包含直播间在线用户列表.各种礼物的排行榜.弹幕消息(类似于按消息维度排序的消息排行榜)等,适合使用Re

  • 浅谈redis五大数据结构和使用场景

    老规矩,先抛结论后验证 string:有点像java的hashMap,存的时候什么key,取的时候也什么key,常用于做缓存,保存用户信息.查询列表等: hash:这个有点像hashMap的value又套了个hashMap,下文有举例,一看就明白了: list:有序列表,类似Java的linkedList,可以在左边右边插入数据: set:去重集合,类似Java的hashset,可用于求交集,比如共同好友: zset:带权重的set集合,可用于做排行榜: 为了方便理解,我们基于这个dog类来做测

  • 浅谈Redis高并发缓存架构性能优化实战

    目录 场景1: 中小型公司Redis缓存架构以及线上问题实战 场景2: 大厂线上大规模商品缓存数据冷热分离实战 场景3: 基于DCL机制解决热点缓存并发重建问题实战 场景4: 突发性热点缓存重建导致系统压力暴增 场景5: 解决大规模缓存击穿导致线上数据库压力暴增 场景6: 黑客工资导致缓存穿透线上数据库宕机 场景7: 大V直播带货导致线上商品系统崩溃原因分析 场景8: Redis分布式锁解决缓存与数据库双写不一致问题实战 场景9: 大促压力暴增导致分布式锁串行争用问题优化 场景10: 利用多级缓

  • 浅谈redis的maxmemory设置以及淘汰策略

    redis的maxmemory参数用于控制redis可使用的最大内存容量.如果超过maxmemory的值,就会动用淘汰策略来处理expaire字典中的键. 关于redis的淘汰策略: Redis提供了下面几种淘汰策略供用户选择,其中默认的策略为noeviction策略: ·   noeviction:当内存使用达到阈值的时候,所有引起申请内存的命令会报错. ·   allkeys-lru:在主键空间中,优先移除最近未使用的key. ·   volatile-lru:在设置了过期时间的键空间中,优

  • 浅谈Redis存储数据类型及存取值方法

    Redis支持五种数据类型:string(字符串),hash(哈希),list(列表),set(集合)及zset(sorted set:有序集合) String存取值: 是 redis 最基本的类型 一个 key 对应一个 value.value其实不仅是String,也可以是数字.string 类型是二进制安全的.意思是 redis 的 string 可以包含任何数据.比如jpg图片或者序列化的对象.string 类型是 Redis 最基本的数据类型,string 类型的值最大能存储 512M

  • 浅谈redis缓存在项目中的使用

    背景 Redis 是一个开源的内存数据结构存储系统. 可以作为数据库.缓存和消息中间件使用. 支持多种类型的数据结构. Redis 内置了 复制(replication),LUA脚本(Lua scripting), LRU驱动事件(LRU eviction),事务(transactions) 和不同级别的 磁盘持久化(persistence). 通过 Redis 哨兵(Sentinel)和 Redis 集群(Cluster)的自动分区,提供高可用性(high availability). 基本数

  • 浅谈Redis主从复制以及主从复制原理

    面临问题 1. 机器故障.我们部署到一台 Redis 服务器,当发生机器故障时,需要迁移到另外一台服务器并且要保证数据是同步的.而数据是最重要的,如果你不在乎,基本上也就不会使用 Redis 了. 2. 容量瓶颈.当我们有需求需要扩容 Redis 内存时,从 16G 的内存升到 64G,单机肯定是满足不了.当然,你可以重新买个 128G 的新机器. 解决办法 要实现分布式数据库的更大的存储容量和承受高并发访问量,我们会将原来集中式数据库的数据分别存储到其他多个网络节点上.Redis 为了解决这个

  • 浅谈Redis中的RDB快照

    一.概述 所谓的快照,就是记录某一个瞬间东西,比如当我们给风景拍照时,那一个瞬间的画面和信息就记录到了一张照片. 所以,RDB 快照就是记录某一个瞬间的内存数据,记录的是实际数据,而 AOF 文件记录的是命令操作的日志,而不是实际的数据. 因此在 Redis 恢复数据时, RDB 恢复数据的效率会比 AOF 快些,因为直接将 RDB 文件读入内存就可以了,不需要像 AOF 那样还需要额外执行操作命令的步骤才能恢复数据. 接下来,就来具体聊聊 RDB 快照 . 二.快照怎么用? 要熟悉一个东西,先

  • 浅谈Redis 缓存的三大问题及其解决方案

    目录 一.缓存穿透 1. 常见解决方案 2. 布隆过滤器 3. 缓存空数据与布隆过滤器的比较 二.缓存击穿 解决方案 三.缓存雪崩 解决方案 Redis 经常用于系统中的缓存,这样可以解决目前 IO 设备无法满足互联网应用海量的读写请求的问题. 一.缓存穿透 缓存穿透是指缓存和数据库中都没有的数据,而用户不断发起请求,如发起 id 为-1 的数据或者特别大的不存在的数据.有可能是黑客利用漏洞攻击从而去压垮应用的数据库. 1. 常见解决方案 对于缓存穿透问题,常见的解决方案有以下三种: 验证拦截:

  • 浅谈Redis跟MySQL的双写问题解决方案

    目录 写在前面 三种读写缓存策略 Cache-AsidePattern(旁路缓存模式) Read-Through/Write-Through(读写穿透) WriteBehindPattern(异步缓存写入) 旁路缓存模式解析 CacheAsidePattern的一些疑问 CacheAsidePattern的缺陷 项目中有遇到这个问题,跟MySQL中的数据不一致,研究一番发现这里面细节并不简单,特此记录一下. 写在前面 严格意义上任何非原子操作都不可能保证一致性,除非用阻塞读写实现强一致性,所以缓

随机推荐