C++实现LeetCode(103.二叉树的之字形层序遍历)

[LeetCode] 103. Binary Tree Zigzag Level Order Traversal 二叉树的之字形层序遍历

Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to right, then right to left for the next level and alternate between).

For example:
Given binary tree [3,9,20,null,null,15,7],

    3
/ \
9  20
/  \
15   7

return its zigzag level order traversal as:

[
[3],
[20,9],
[15,7]
]

这道二叉树的之字形层序遍历是之前那道 Binary Tree Level Order Traversal 的变形,不同之处在于一行是从左到右遍历,下一行是从右往左遍历,交叉往返的之字形的层序遍历。最简单直接的方法就是利用层序遍历,并使用一个变量 cnt 来统计当前的层数(从0开始),将所有的奇数层的结点值进行翻转一下即可,参见代码如下:

解法一:

class Solution {
public:
    vector<vector<int>> zigzagLevelOrder(TreeNode* root) {
        if (!root) return {};
        vector<vector<int>> res;
        queue<TreeNode*> q{{root}};
        int cnt = 0;
        while (!q.empty()) {
            vector<int> oneLevel;
            for (int i = q.size(); i > 0; --i) {
                TreeNode *t = q.front(); q.pop();
                oneLevel.push_back(t->val);
                if (t->left) q.push(t->left);
                if (t->right) q.push(t->right);
            }
            if (cnt % 2 == 1) reverse(oneLevel.begin(), oneLevel.end());
            res.push_back(oneLevel);
            ++cnt;
        }
        return res;
    }
};

我们可以将上面的解法进行优化一下,翻转数组虽然可行,但是比较耗时,假如能够直接计算出每个结点值在数组中的坐标,就可以直接进行更新了。由于每层的结点数是知道的,就是队列的元素个数,所以可以直接初始化数组的大小。此时使用一个变量 leftToRight 来标记顺序,初始时是 true,当此变量为 true 的时候,每次加入数组的位置就是i本身,若变量为 false 了,则加入到 size-1-i 位置上,这样就直接相当于翻转了数组。每层遍历完了之后,需要翻转 leftToRight 变量,同时不要忘了将 oneLevel 加入结果 res,参见代码如下:

解法二:

class Solution {
public:
    vector<vector<int>> zigzagLevelOrder(TreeNode* root) {
        if (!root) return {};
        vector<vector<int>> res;
        queue<TreeNode*> q{{root}};
        bool leftToRight = true;
        while (!q.empty()) {
            int size = q.size();
            vector<int> oneLevel(size);
            for (int i = 0; i < size; ++i) {
                TreeNode *t = q.front(); q.pop();
                int idx = leftToRight ? i : (size - 1 - i);
                oneLevel[idx] = t->val;
                if (t->left) q.push(t->left);
                if (t->right) q.push(t->right);
            }
            leftToRight = !leftToRight;
            res.push_back(oneLevel);
        }
        return res;
    }
};

我们也可以使用递归的方法来解,这里实际上用的是先序遍历,递归函数需要一个变量 level 来记录当前的深度,由于 level 是从0开始的,假如结果 res 的大小等于 level,就需要在结果 res 中新加一个空集,这样可以保证 res[level] 不会越界。取出 res[level] 之后,判断 levle 的奇偶,若其为偶数,则将 node->val 加入 oneLevel 的末尾,若为奇数,则加在 oneLevel 的开头。然后分别对 node 的左右子结点调用递归函数,此时要传入 level+1 即可,参见代码如下:

解法三:

class Solution {
public:
    vector<vector<int>> zigzagLevelOrder(TreeNode* root) {
        vector<vector<int>> res;
        helper(root, 0, res);
        return res;
    }
    void helper(TreeNode* node, int level, vector<vector<int>>& res) {
        if (!node) return;
        if (res.size() <= level) {
            res.push_back({});
        }
        vector<int> &oneLevel = res[level];
        if (level % 2 == 0) oneLevel.push_back(node->val);
        else oneLevel.insert(oneLevel.begin(), node->val);
        helper(node->left, level + 1, res);
        helper(node->right, level + 1, res);
    }
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/103

类似题目:

Binary Tree Level Order Traversal

参考资料:

https://leetcode.com/problems/binary-tree-zigzag-level-order-traversal/

https://leetcode.com/problems/binary-tree-zigzag-level-order-traversal/discuss/33815/My-accepted-JAVA-solution

https://leetcode.com/problems/binary-tree-zigzag-level-order-traversal/discuss/33825/c%2B%2B-5ms-version%3A-one-queue-and-without-reverse-operation-by-using-size-of-each-level

到此这篇关于C++实现LeetCode(103.二叉树的之字形层序遍历)的文章就介绍到这了,更多相关C++实现二叉树的之字形层序遍历内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++实现LeetCode(145.二叉树的后序遍历)

    [LeetCode] 145. Binary Tree Postorder Traversal 二叉树的后序遍历 Given a binary tree, return the postorder traversal of its nodes' values. For example: Given binary tree {1,#,2,3},    1 \ 2 / 3 return [3,2,1]. Note: Recursive solution is trivial, could you d

  • C++实现LeetCode(100.判断相同树)

    [LeetCode] 100. Same Tree 判断相同树 Given two binary trees, write a function to check if they are the same or not. Two binary trees are considered the same if they are structurally identical and the nodes have the same value. Example 1: Input:     1     

  • C++实现LeetCode(98.验证二叉搜索树)

    [LeetCode] 98. Validate Binary Search Tree 验证二叉搜索树 Given a binary tree, determine if it is a valid binary search tree (BST). Assume a BST is defined as follows: The left subtree of a node contains only nodes with keys less than the node's key. The ri

  • C++实现LeetCode(139.拆分词句)

    [LeetCode] 139. Word Break 拆分词句 Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine if s can be segmented into a space-separated sequence of one or more dictionary words. Note: The same word in the dic

  • C++实现LeetCode(97.交织相错的字符串)

    [LeetCode] 97.Interleaving String 交织相错的字符串 Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2. Example 1: Input: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac" Output: true Example 2: Input: s1 = &quo

  • C++实现LeetCode(107.二叉树层序遍历之二)

    [LeetCode] 107. Binary Tree Level Order Traversal II 二叉树层序遍历之二 Given the root of a binary tree, return the bottom-up level order traversal of its nodes' values. (i.e., from left to right, level by level from leaf to root). Example 1: Input: root = [3

  • C++实现LeetCode(312.打气球游戏)

    [LeetCode] 312. Burst Balloons 打气球游戏 Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon iyou will get nums[left] * nums[i]

  • C++实现LeetCode(99.复原二叉搜索树)

    [LeetCode] 99. Recover Binary Search Tree 复原二叉搜索树 Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing its structure. Example 1: Input: [1,3,null,null,2]    1 / 3 \ 2 Output: [3,1,null,null,2]    3 / 1

  • C++实现LeetCode(102.二叉树层序遍历)

    [LeetCode] 102. Binary Tree Level Order Traversal 二叉树层序遍历 Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level). For example: Given binary tree {3,9,20,#,#,15,7},     3 / \ 9  20 /  \ 15 

  • C++实现LeetCode(103.二叉树的之字形层序遍历)

    [LeetCode] 103. Binary Tree Zigzag Level Order Traversal 二叉树的之字形层序遍历 Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to right, then right to left for the next level and alternate between). For example

  • Java中关于二叉树层序遍历深入了解

    前言 大家好,我是bigsai,在数据结构与算法中,二叉树无论是考研.笔试都是非常高频的考点内容,在二叉树中,二叉树的遍历又是非常重要的知识点,今天给大家讲讲二叉树的层序遍历. 这部分很多人可能会但是需要注重一下细节. 前面介绍了二叉排序树的构造和基本方法的实现,遍历也是比较重要的一环,并且二叉树的层序遍历也是bfs的最简单情况,这里我就将二叉树的层序遍历以及常考问题给大家分享一下. 在了解二叉树的遍历之前,需要具备数据结构与算法有队列.递归.栈.二叉树,这些内容咱们前面都有讲过,有这方面知识欠

  • C++实现LeetCode(144.二叉树的先序遍历)

    [LeetCode] 144. Binary Tree Preorder Traversal 二叉树的先序遍历 Given a binary tree, return the preorder traversal of its nodes' values. Example: Input:  [1,null,2,3] 1 \ 2 / 3 Output:  [1,2,3] Follow up: Recursive solution is trivial, could you do it iterat

  • C++实现LeetCode(94.二叉树的中序遍历)

    [LeetCode] 94. Binary Tree Inorder Traversal 二叉树的中序遍历 Given a binary tree, return the inorder traversal of its nodes' values. Example: Input: [1,null,2,3] 1 \ 2 / 3 Output: [1,3,2] Follow up: Recursive solution is trivial, could you do it iteratively

  • C++实现LeetCode(112.二叉树的路径和)

    [LeetCode] 112. Path Sum 二叉树的路径和 Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum. Note: A leaf is a node with no children. Example: Given the below bi

  • C++实现LeetCode(113.二叉树路径之和之二)

    [LeetCode] 113. Path Sum II 二叉树路径之和之二 Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given sum. For example: Given the below binary tree and sum = 22,  5 / \ 4   8 /      / \ 11  13  4 /  \         / \ 7  

  • C++实现LeetCode(104.二叉树的最大深度)

    [LeetCode] 104. Maximum Depth of Binary Tree 二叉树的最大深度 Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node. Note: A leaf is a node with no child

随机推荐