点云地面点滤波(Cloth Simulation Filter, CSF)"布料"滤波算法详解

目录
  • 1. 引言
  • 2. 基本思想
  • 3. CSF算法实现步骤
  • 3.1 “布料”模拟
  • 3.3 具体实现
    • 3.4 后处理
    • 4. 算法使用

本篇博客参考Wuming Zhang的文章“An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation

不方便的小伙伴可以在此:资源链接下载。

1. 引言

机载LiDAR可以获取快速、低成本地获取大区域的高精度地形测量值。为了获取高精度的地形数据(厘米级),对机载LiDAR点云数据进行“滤波”是一个非常重要的步骤。因此近二十年来,国内外学者提出了众多有效的自动滤波算法,大大降低了人力成本,提高了点云数据的应用效率。在博客:“点云地面点滤波(Progressive Morphological Filter)算法介绍(PCL库)”与“点云地面点滤波-progressive TIN densification(PTD)算法介绍”中分别对两种常用滤波器进行了介绍。
以往的众多算法滤波效果容易受到地形特征的影响(通常在复杂场景及陡峭地形区域滤波效果较差)且常常需要用户对数据有较为丰富的先验知识来进行设置滤波器中的各种参数。
为了解决这些问题,张吴明教授等人在2015年第三届全国激光雷达大会提出的“布料”滤波算法,本篇博客对其进行了简要介绍。

2. 基本思想

传统的滤波算法大多是考虑在坡度、高程变化之间的不同来进行区分地物点地面点,而布料”滤波算法从一个完全新的思路来进行滤波,首先把点云进行翻转,然后假设有一块布料受到重力从上方落下,则最终落下的布料就可以代表当前地形。如下图所示,可以帮助我们进行理解。

下方的蓝色图形代表原始测量值,对其进行翻转,红色虚线代表布料,可以反映地形的起伏。

3. CSF算法实现步骤

3.1 “布料”模拟

首先,定义了一个基本公式:

式中,X代表“布料”中的粒子在 t 时刻的位置,Fext(X,t)代表外部驱动因素(重力,碰撞等),Fint(X,t)代表内部驱动因素(粒子间的内部联系)。

即可以总结为“布料”粒子的位置受到Fext(X,t)与Fint(X,t)两方面因素的影响。

随后如下图所示,通过四个状态对“布料”粒子的移动过程进行说明。

(a)为初始状态,假设一个虚拟的布放在翻转的LiDAR测量值上方。黑色点为LiDAR测量值,深红色点为可移动粒子。
(b)计算重力影响下对粒子产生的位移,由此一些粒子可能会出现在地面的下方。浅红色点为粒子的旧位置。
(c)相交检查,检查粒子新位置是否到达地面,如果已经到达地面则设置为不可移动。蓝色点代表粒子不可移动
(d)考虑“布料”的内部驱动,对现有的“可移动”粒子,根据邻近粒子所产生的“力”来进行移动新的位置。(如上图小房子处的可移动粒子)

3.2 外部/内部因素驱动

如3.1节中所述,粒子的位置移动包括外部/内部两方面的驱动因素,首先假设只有外部因素Fext(X,t),并设置内部因素Fint(X,t)为0,可以得到以下公式:

式中,m为粒子的重量,通常设置为1,△t 为时间步长。且由于G是一个常数,所以上式非常容易计算,只要给定一个△t 就可以计算出下一次迭代粒子所在的新位置。

为了约束粒子在反转表面空白区域的反转问题,作者又考虑了使用内部因素Fint(X,t) 。任意选取两个相邻的粒子,如果两个粒子都是 可移动 的,则令二者往相反的方向移动同样的距离;如果一个是不可移动的,则移动另一个;如果两者具有相同的高度,则不进行移动。
位移量可以通过下式进行计算:

式中,d为粒子的位移量;当粒子可移动时,b等于1,不可移动时b等于0;pi为p0的相邻粒子,n是把点进行标准化到垂直方向上的单位向量(0,0,1)T。

移动过程如下图所示:

同时还引入了一个新的参数rigidness, RI,用来描述粒子的移动次数,RI为1时,则移动一次,且移动的距离是两个粒子之间高差的1/2;RI为2时,则移动两次,且移动3/4。类似的,RI为3时,移动三次,移动距离为两个粒子高差的7/8。RI的值越大,则“布料”就越硬,一般来说,平地需要设置RI的值较大,陡坡、山区需要设置的RI值较小。

3.3 具体实现

综上所述,布料模拟的简要步骤可以总结如下:
1)通过第三方软件去除原始LiDAR点云数据中的“孤立点”。
2)反转LiDAR点云。
3)初始布料格网,这时用户需要设置格网的大小(grid resolution, GR)。初始“布料”的位置通常在最高点的上方。
4)把所有LiDAR点与格网粒子投影到同一个水平面,并找到每一个粒子的最近邻点(corresponding point, cp),记录其投影前的高程(intersection height value, IHV)
5)对于每一个可移动的格网“粒子”,计算其受到重力影响产生的位移,并与当前粒子对应cp点的IHV进行比较,如果粒子的高度低于或者等于IHV,则把粒子的高度设置为IHV并设置为不可移动点。
6)对于每个格网“粒子”,计算其受到内部驱动因素影响所产生的的位移。
7)重复上述5)、6)步骤,直到所有粒子的最大高承诺变化足够小或者迭代次数到达用户的预先设置值,则停止模拟过程。
8)计算LiDAR点云与格网粒子之间的高度差异。
9)区分地面点与非地面点,如果LiDAR点与模拟粒子之间的距离小于预先设置的阈值hcc,则认为其是地面点,反之则认为其为非地面点。

3.4 后处理

上述方法处理过后对于平坦区域可以取得较好的效果,但是对于“陡坡”区域仍然会产生较大的误差,因为“布料”会由于其粒子间的内部约束而落在地面测量值的上方。如下图所示:

为了消除这些误差,可以通过一个后处理方法来解决。在每一个“可移动”粒子的四个邻接点中找到“不可移动”粒子,然后比较“最近邻点”之间的高程差,如果高程差值小于阈值hcp,则把“可移动”粒子移动到地面,并设置为不可移动。
例如,上图中的D点,找到了一个不可移动的粒子A,然后比较C,B之间的高程差值(对于D点、A点之间的最近邻点CP)。如果高程差值小于阈值hcp则待判断点D就被移动到C点,且被设置为不可移动。重复上述操作,直到所有的“可移动”粒子被正确处理。
如果逐行扫描“粒子”来进行实现此后处理操作,结果可能会受到特定扫描方向的影响。因此,作者采用了先建立一个“强连接元素集”(strongly connected components, SCC)包含一个关联的可移动粒子集。

如上图所示,每个SCC中包括两种粒子,第一种是至少包含一个近邻“不可移动”粒子(上图中的黄色点M1),第二种是近邻点中不包含“不可移动”粒子(上图中的红色点M2)。执行过程中使用外部的黄色点为“初始种子点”,通过“广度优先”的方式逐步向内遍历SCC。如上图中的从1-18点,实现了从边缘逐步向内部靠近处理过程,而不受扫描方向的影响。

4. 算法使用

Cloth Simulation Filter已经在各种点云处理软件,以及MATLAB中都可以直接进行使用,对用户操作友好,非常方便。

各种使用方式的超链接如下:
MATLAB中mex插件
cloud compare中CSF滤波
dll与lib下载
以及源码都在github上开源了

到此这篇关于点云地面点滤波(Cloth Simulation Filter, CSF)"布料"滤波算法详解的文章就介绍到这了,更多相关python 点云地面点滤波内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python实现CSF地面点滤波算法原理解析

    目录 一.算法原理 二.读取las点云 三.算法源码 四.结果展示 五.CloudCompare实现 一.算法原理 布料模拟滤波处理流程: 1)利用点云滤波算法或者点云处理软件滤除异常点: 2)将激光雷达点云倒置: 3)设置模拟布料,设置布料网格分辨率 G R GR GR,确定模拟粒子数.布料的位置设置在点云最高点以上: 4)将布料模拟点和雷达点投影到水平面,为每个布料模拟点找到最相邻的激光点的高度值,将高度值设置为 I H V IHV IHV: 5)布料例子设置为可移动,布料粒子首先受到重力作

  • 点云地面点滤波(Cloth Simulation Filter, CSF)"布料"滤波算法详解

    目录 1. 引言 2. 基本思想 3. CSF算法实现步骤 3.1 "布料"模拟 3.3 具体实现 3.4 后处理 4. 算法使用 本篇博客参考Wuming Zhang的文章"An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation" 不方便的小伙伴可以在此:资源链接下载. 1. 引言 机载LiDAR可以获取快速.低成本地获取大区域的高精度地形测量值.为了获取高精度的地

  • 点云地面点滤波(Cloth Simulation Filter, CSF)

    目录 1. 引言 2. 基本思想 3. CSF算法实现步骤 3.1 "布料"模拟 3.2 外部/内部因素驱动 3.3 具体实现 3.4 后处理 4. 算法使用 本篇博客参考Wuming Zhang的文章"An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation" 不方便的小伙伴可以在此:资源链接下载. 1. 引言 机载LiDAR可以获取快速.低成本地获取大区域的高精度地

  • Filter过滤器和Listener监听器详解

     Filter过滤器和Listener监听器详解 Filter过滤器 Filter的简介 对资源的访问进行过滤,相当于小区的保安,进去要检查,出去还要检查. Filter的使用 编写一个类,继承并实现javax.servlet.Filter. package com.jyh.filter; import java.io.IOException; import javax.servlet.Filter; import javax.servlet.FilterChain; import javax.

  • python点云地面点滤波(Progressive Morphological Filter)算法介绍(PCL库)

    目录 1. 引言 2. Morphological Filters(形态学滤波) 2.1 膨胀/腐蚀 2.2 形态学滤波 3. Progressive Morphological Filters 3.1 参数计算(窗口尺寸/高程差阈值) 3.1.1 窗口尺寸 3.1.2 高程差阈值 3.2 参数输入/输出 3.2.1 参数输入 3.2.1 参数输出 3.3 PCL官方示例代码 本篇博客参考Keqi Zhang的文章"A Progressive Morphological Filter for R

  • python 点云地面点滤波-progressive TIN densification(PTD)算法介绍

    本篇博客参考: 1)DEM generation from laser scanner data using adaptive TIN models 2)Filtering airborne LiDAR data by embedding smoothness-constrained segmentation in progressive TIN densification 文章名中有超链接,若不方便下载,则可以在此:资源链接进行下载. 1.引言 1.1什么是地面点滤波? 机载激光雷达(airb

  • Python OpenCV图像处理之图像滤波特效详解

    目录 1分类 2邻域滤波 2.1线性滤波 2.2非线性滤波 3频域滤波 3.1低通滤波 3.2高通滤波 1 分类 图像滤波按图像域可分为两种类型: 邻域滤波(Spatial Domain Filter),其本质是数字窗口上的数学运算.一般用于图像平滑.图像锐化.特征提取(如纹理测量.边缘检测)等,邻域滤波使用邻域算子——利用给定像素周围像素值以决定此像素最终输出的一种算子 频域滤波(Frequency Domain Filter),其本质是对像素频率的修改.一般用于降噪.重采样.图像压缩等. 按

  • 详解AngularJS中$filter过滤器使用(自定义过滤器)

    1.内置过滤器 * $filter 过滤器,是angularJs中用来处理数据以更好的方式展示给我用户.比如格式化日期,转换大小写等等. * 过滤器即有内置过滤器也支持自定义过滤器.内置过滤器很多,可以百度.关键是如何使用: * 1.在HTML中直接使用内置过滤器 * 2.在js代码中使用内置过滤器 * 3.自定义过滤器 * * (1)常用内置过滤器 * number 数字过滤器,可以设置保留数字小数点后几位等 * date 时间格式化过滤器,可自己设置时间格式 * filter 过滤的数据一般

  • AngularJS中filter的使用实例详解

    AngularJS中filter的使用实例详解 一.格式化数字为货币格式. <div>{{money|currency:"$"}}</div> <div>{{money|currency:"RMB"}}</div> script: app.controller("crl", function($scope, $filter) { $scope.money="4545"; });

  • AngularJS的Filter的示例详解

    贴上几个有关Filter使用的几个示例. 1. 首先创建一个表格 <body ng-app="app"> <div class="divAll" ng-controller="tableFilter"> <input type="text" placeholder="输入你要搜索的内容" ng-model="key"> <br><br

  • JavaWeb Servlet中Filter过滤器的详解

    JavaWeb Servlet中Filter过滤器的详解 1.简述 Filter过滤器,对web服务器所有web资源进行过滤,从而实现一些特殊的功能(权限访问控制.过滤敏感词汇.压缩响应信息).Filter能够对Servlet容器的请求和响应进行检查和修改,其本身不能生成请求request和响应response,只提供过滤作用(Servlet被调用之前检查Request对象修改其相关信息,Servlet被调用后检查Response修改其相关信息),Filter对象常驻服务器. 2.Lifecyc

随机推荐