C++11-20 常量表达式的使用

目录
  • C++98时代
  • C++11时代
  • C++14时代
  • C++17时代
  • C++20时代
  • 参考资料

C++98时代

C++98编译器对int常量情有独钟,因为这是少数它能直接识别的东西。因为这个有限的能力,编译器就能够预先判定数组的大小了:

  TEST_METHOD(TestConstVar)
  {
   //int n = 3;
   const int n = 3;
   int a[n] = { 0 };
   Assert::AreEqual(size_t(3), _countof(a));

   const int m = n * 3;
   int b[m] = { 0 };
   Assert::AreEqual(size_t(9), _countof(b));
  }

并由此还引入了一个“常量折叠”的概念,即编译器会自动将所有const int变量的引用全部替换为常量:

  TEST_METHOD(TestConstVarFold)
  {
   const int a = 10;
   int b = 2 * a;
   int* p = (int*)&a;
   *p = 100;

   // 没有常量折叠?
   Assert::AreEqual(100, a);
   Assert::AreEqual(20, b);
   Assert::AreEqual(100, *p);
  }

我们不必纠结于这里的a到底是10还是100,这完全取决于编译器的实现。而实际工作中谁要写出这样的代码,直接拖出去打死了事。

C++11时代

constexpr值

C++98编译器对常量的那点有限智商实在是令人着急。C++11干脆就引入了一个新的关键字constexpr,以便让编译器可以做更多的事情。

  TEST_METHOD(TestConstExprVar)
  {
   constexpr int n = 3;
   int a[n] = { 0 };
   Assert::AreEqual(size_t(3), _countof(a));

   constexpr int m = n * 3;
   int b[m] = { 0 };
   Assert::AreEqual(size_t(9), _countof(b));
  }

constexpr看起来和const没啥区别嘛?但实际上,你可以把constexpr理解为真正的编译期常量,而const实际上是运行期常量,以前之所以能在编译期起作用完全是不得已的救场客串行为。

constexpr函数

当然,如果constexpr仅仅有这点作用,那是绝对不会被作为新的关键字引入的。更为重要的是,既然编译期已经知道constexpr就代表编译期可以运行的东西,那么它为什么不可以修饰函数?让只能在运行期调用的函数可以在编译期起作用:

  static constexpr int size()
  {
   return 3;
  }

  static constexpr int sqrt(int n)
  {
   return n * n;
  }

  static constexpr int sum(int n)
  {
   return n > 0 ? n + sum(n - 1) : 0;
  }
  TEST_METHOD(TestConstExprFunc)
  {
   int a[size()] = { 0 };
   Assert::AreEqual(size_t(3), _countof(a));

   int b[sqrt(3)] = { 0 };
   Assert::AreEqual(size_t(9), _countof(b));

   int c[sum(3)] = { 0 };
   Assert::AreEqual(size_t(6), _countof(c));
  }

当然,在C++11阶段,这种constexpr函数限制很多:

  • 函数必须返回一个值,不能是void
  • 函数体只能有一条语句return
  • 函数调用前必须被定义
  • 函数必须用constexpr声明

浮点型常量

尽管有些限制,但是毕竟也是个函数,所以要实现C++98编译期头疼的浮点型常量也变得很简单了:

  static constexpr double pi()
  {
   return 3.1415926535897;
  }

  TEST_METHOD(TestConstExprDouble)
  {
   int a[(int)pi()] = { 0 };
   Assert::AreEqual(size_t(3), _countof(a));
  }

constexpr类

C++的一大特点就是面向对象的,既然constexpr可以修饰函数了,那为什么不能修饰成员函数呢?

  class N
  {
  private:
   int m_n;

  public:
   constexpr N(int n = 0)
    :m_n(n)
   {
   }

   constexpr int getN() const
   {
    return m_n;
   }
  };

  TEST_METHOD(TestConstExprConstruct)
  {
   constexpr N n(3);
   int a[n.getN()] = { 0 };
   Assert::AreEqual(size_t(3), _countof(a));
  }

C++14时代

C++11的constexpr很好,很强大。但是最为令人诟病的就是constexpr函数限制实在是太多了。于是C++14开始为其松绑:

 static constexpr int abs(int n)
  {
   if (n > 0)
   {
    return n;
   }
   else
   {
    return -n;
   }
  }

  static constexpr int sumFor(int n)
  {
   int s = 0;
   for (int i = 1; i <= n; i++)
   {
    s += i;
   }

   return s;
  }

  static constexpr int next(int n)
  {
   return ++n;
  }

  TEST_METHOD(TestConstExprFunc14)
  {
   int a[abs(-3)] = { 0 };
   Assert::AreEqual(size_t(3), _countof(a));

   int b[sumFor(3)] = { 0 };
   Assert::AreEqual(size_t(6), _countof(b));

   int c[next(3)] = { 0 };
   Assert::AreEqual(size_t(4), _countof(c));
  }

基本上,这基本上就是真正的函数了,不再限制为只能一行代码了:

  • 可以使用分支控制语句了
  • 可以使用循环控制语句了
  • 可以修改生命周期和常量表达式相同的变量了,所以连++n之类的表达式也可以支持了

甚至连函数必须返回一个值,不能是void的限制也被取消了,所以可以写setN之类的函数了,不过这个不太常用。

C++17时代

C++17进一步把constexpr的范围扩展到了lambda表达式:

  static constexpr int lambda(int n)
  {
   return [](int n) { return ++n; }(n);
  }

  TEST_METHOD(TestConstExprLambda)
  {
   int a[lambda(3)] = { 0 };
   Assert::AreEqual(size_t(4), _countof(a));
  }

为了让一个函数可以适应更多的情况,C++17还把黑手伸向了if语句,引入了所谓的“if constexpr”:

  template<typename T>
  static bool is_same_value(T a, T b)
  {
   if constexpr (std::is_same<T, double>::value)
   {
    if (std::abs(a - b) < 0.0001)
    {
     return true;
    }
    else
    {
     return false;
    }
   }
   else
   {
    return a == b;
   }
  }

  TEST_METHOD(TestConstExprIf)
  {
   Assert::AreEqual(false, is_same_value(5.6, 5.11));
   Assert::AreEqual(true, is_same_value(5.6, 5.60000001));
   Assert::AreEqual(true, is_same_value(5, 5));
  }

以前,类似的代码需要一个模板函数加上一个特化函数,现在一个函数就搞定了,真好。

C++20时代

不出意料,C++20继续把黑手伸向更多的地方

constexpr和异常:

  static constexpr int funcTry(int n)
  {
   try
   {
    if (n % 2 == 0)
    {
     return n / 2;
    }
    else
    {
     return n;
    }
   }
   catch (...)
   {
    return 3;
   }
  }

  TEST_METHOD(TestConstExprTry)
  {
   int a[funcTry(6)] = { 0 };
   Assert::AreEqual(size_t(3), _countof(a));

   int b[funcTry(3)] = { 0 };
   Assert::AreEqual(size_t(3), _countof(b));
  }

constexpr和union:

  union F
  {
   int i;
   double f;
  };

  static constexpr int funcUnion(int n)
  {
   F f;
   f.i = 3;
   f.f = 3.14;

   return n;
  }

  TEST_METHOD(TestConstExprUnion)
  {
   int a[funcUnion(3)] = { 0 };
   Assert::AreEqual(size_t(3), _countof(a));
  }

constexpr和虚函数

这个有点过分,不知道有多少实际用处,略。

立即函数

用consteval修饰的函数,表示在编译期可以立即执行,如果执行不了就报错。

  static consteval int sqr(int n)
  {
   return n * n;
  }

  TEST_METHOD(TestConstEval)
  {
   int a[sqr(3)] = { 0 };
   Assert::AreEqual(size_t(9), _countof(a));
  }

感知常量环境

这个有点意思,如果可以感知是否是常量环境,就可以让一个函数分别给出编译期的实现和运行期的实现,其方法是使用std::is_constant_evaluated():

  static constexpr double power(double b, int n)
  {
   if (std::is_constant_evaluated() && n >= 0)
   {
    double r = 1.0, p = b;
    unsigned u = unsigned(n);
    while (u != 0)
    {
     if (u & 1) r *= p;
     u /= 2;
     p *= p;
    }

    return r;
   }
   else
   {
    return std::pow(b, double(n));
   }
  }

  TEST_METHOD(TestConstEvaluated)
  {
   constexpr double p = power(3, 2);
   Assert::AreEqual(9.0, p, 0.001);
   int m = 2;
   Assert::AreEqual(9.0, power(3, m), 0.001);
  }

参考资料

《现代C++语言核心特性解析》

到此这篇关于C++11-20 常量表达式的使用的文章就介绍到这了,更多相关C++ 常量表达式内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 剖析C++中的常量表达式与省略号的相关作用

    C++ 常量表达式 常量值是指不会更改的值.C + + 提供了两个关键字,它们使你能够表达不打算修改对象的意图,还可让你实现该意图. C++ 需要常量表达式(计算结果为常量的表达式)以便声明: 数组边界 case 语句中的选择器 位域长度规范 枚举初始值设定项 常量表达式中合法的唯一操作数是: 文本 枚举常量 声明为使用常量表达式初始化的常量的值 sizeof 表达式 必须将非整型常量(显式或隐式)转换为常量表达式中合法的整型.因此,以下代码是合法的: const double Size = 1

  • C++11-20 常量表达式的使用

    目录 C++98时代 C++11时代 C++14时代 C++17时代 C++20时代 参考资料 C++98时代 C++98编译器对int常量情有独钟,因为这是少数它能直接识别的东西.因为这个有限的能力,编译器就能够预先判定数组的大小了: TEST_METHOD(TestConstVar) { //int n = 3; const int n = 3; int a[n] = { 0 }; Assert::AreEqual(size_t(3), _countof(a)); const int m =

  • JavaScript中全局变量、函数内变量以及常量表达式的效率测试

    var r, s = "this is a very very looooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooong string", x = /^\s+|\s+$/g; document.writeln("字符串测试 "); (function(){ document.write("全局->全局:"); var t = new Date(); for(

  • 一文读懂c++11 Lambda表达式

    1.简介 1.1定义 C++11新增了很多特性,Lambda表达式(Lambda expression)就是其中之一,很多语言都提供了 Lambda 表达式,如 Python,Java ,C#等.本质上, Lambda 表达式是一个可调用的代码单元[1]^{[1]}[1].实际上是一个闭包(closure),类似于一个匿名函数,拥有捕获所在作用域中变量的能力,能够将函数做为对象一样使用,通常用来实现回调函数.代理等功能.Lambda表达式是函数式编程的基础,C++11引入了Lambda则弥补了C

  • C++98/11/17表达式类别(小结)

    目标 以下代码能否编译通过,能否按照期望运行? #include <utility> #include <type_traits> namespace cpp98 { struct A { }; A func() { return A(); } int main() { int i = 1; i = 2; // 3 = 4; const int j = 5; // j = 6; i = j; func() = A(); return 0; } } namespace cpp11 {

  • 深入解析C++11 lambda表达式/包装器/线程库

    目录 零.前言 一.lambda表达式 1.lambda的引入 2.lambda表达式语法 3.捕获列表说明 4.函数对象与lambda表达式 二.包装器 1.function包装器 2.bind 概念: 三.线程库 1.线程的概念及使用 2.线程函数参数 3.原子性操作库(atomic) 4.lock_guard与unique_lock 1.mutex的种类 2.lock_guard 3.unique_lock 5.两个线程交替打印奇数偶数 零.前言 本章是讲解学习C++11语法新特性的第三篇

  • C++11 lambda表达式在回调函数中的使用方式

    目录 一.lambda表达式在C++异步框架中的应用 二.如何在C-style注册回调函数中使用lambda表达式? 在回调函数中使用lambda表达式的好处,在于可以利用C++的RAII机制来做资源的自动申请释放,避免手动管理出错. 一.lambda表达式在C++异步框架中的应用 1. 一个boost asio的例子 // // async_tcp_echo_server.cpp // ~~~~~~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-202

  • C++11的新特性简单汇总介绍 (一)

    什么是C++11 C++11是曾经被叫做C++0x,是对目前C++语言的扩展和修正,C++11不仅包含核心语言的新机能,而且扩展了C++的标准程序库(STL),并入了大部分的C++ Technical Report 1(TR1)程序库(数学的特殊函数除外). C++11包括大量的新特性:包括lambda表达式,类型推导关键字auto.decltype,和模板的大量改进. 1. 概述 最近在看C++ Primer5 刚好看到一半,总结一下C++11里面确实加了很多新东西,如果没有任何了解,别说自己

  • Java8语法糖之Lambda表达式的深入讲解

    一.Lambda表达式简介 Lambda表达式,是Java8的一个新特性,也是Java8中最值得学习的新特性之一.(另一个新特性是流式编程.) Lambda表达式,从本质上讲是一个匿名方法.可以使用这个匿名方法,实现接口中的方法. 功能:通常使用Lambda表达式,是为了简化接口实现的.关于接口实现可以有多种方式实现,例如:①设计接口的实现类.②使用匿名内部类.但是③使用lambda表达式,比这两种方式都简单. 要求:lambda表达式,只能实现函数式接口:即一个接口中,要求实现类必须实现的抽象

  • Java class文件格式之常量池_动力节点Java学院整理

    常量池中各数据项类型详解 常量池中的数据项是通过索引来引用的, 常量池中的各个数据项之间也会相互引用.在这11中常量池数据项类型中, 有两种比较基础, 之所以说它们基础, 是因为这两种类型的数据项会被其他类型的数据项引用. 这两种数据类型就是CONSTANT_Utf8 和 CONSTANT_NameAndType , 其中CONSTANT_NameAndType类型的数据项(CONSTANT_NameAndType_info)也会引用CONSTANT_Utf8类型的数据项(CONSTANT_Ut

随机推荐