Matplotlib绘制子图的常见几种方法

前言

Matplotlib的可以把很多张图画到一个显示界面,在作对比分析的时候非常有用。
对应的有plt的subplot和figure的add_subplo的方法,参数可以是一个三位数字(例如111),也可以是一个数组(例如[1,1,1]),3个数字分别代表

  • 子图总行数
  • 子图总列数
  • 子图位置

更多详情可以查看:matplotlib文档

下面贴出两种绘子图的代码

常用的三种方式

方式一:通过plt的subplot

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# author: chenqionghe

# 画第1个图:折线图
x=np.arange(1,100)
plt.subplot(221)
plt.plot(x,x*x)

# 画第2个图:散点图
plt.subplot(222)
plt.scatter(np.arange(0,10), np.random.rand(10))

# 画第3个图:饼图
plt.subplot(223)
plt.pie(x=[15,30,45,10],labels=list('ABCD'),autopct='%.0f',explode=[0,0.05,0,0])

# 画第4个图:条形图
plt.subplot(224)
plt.bar([20,10,30,25,15],[25,15,35,30,20],color='b')
plt.show()

方式二:通过figure的add_subplot

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# author: chenqionghe

fig=plt.figure()

# 画第1个图:折线图
x=np.arange(1,100)
ax1=fig.add_subplot(221)
ax1.plot(x,x*x)

# 画第2个图:散点图
ax2=fig.add_subplot(222)
ax2.scatter(np.arange(0,10), np.random.rand(10))

# 画第3个图:饼图
ax3=fig.add_subplot(223)
ax3.pie(x=[15,30,45,10],labels=list('ABCD'),autopct='%.0f',explode=[0,0.05,0,0])

# 画第4个图:条形图
ax4=fig.add_subplot(224)
ax4.bar([20,10,30,25,15],[25,15,35,30,20],color='b')
plt.show()

方式三:通过plt的subplots

subplots返回的值的类型为元组,其中包含两个元素:第一个为一个画布,第二个是子图

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# author: chenqionghe

fig,subs=plt.subplots(2,2)

# 画第1个图:折线图
x=np.arange(1,100)
subs[0][0].plot(x,x*x)

# 画第2个图:散点图
subs[0][1].scatter(np.arange(0,10), np.random.rand(10))

# 画第3个图:饼图
subs[1][0].pie(x=[15,30,45,10],labels=list('ABCD'),autopct='%.0f',explode=[0,0.05,0,0])

# 画第4个图:条形图
subs[1][1].bar([20,10,30,25,15],[25,15,35,30,20],color='b')
plt.show()

运行结果如下

就是这么简单,

如何不规则划分

前面的两个图占了221和222的位置,如果想在下面只放一个图,得把前两个当成一列,即2行1列第2个位置

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# author: chenqionghe

# 画第1个图:折线图
x=np.arange(1,100)
plt.subplot(221)
plt.plot(x,x*x)

# 画第2个图:散点图
plt.subplot(222)
plt.scatter(np.arange(0,10), np.random.rand(10))

# 画第3个图:饼图
plt.subplot(223)
plt.pie(x=[15,30,45,10],labels=list('ABCD'),autopct='%.0f',explode=[0,0.05,0,0])

# 画第3个图:条形图
# 前面的两个图占了221和222的位置,如果想在下面只放一个图,得把前两个当成一列,即2行1列第2个位置
plt.subplot(212)
plt.bar([20,10,30,25,15],[25,15,35,30,20],color='b')
plt.show()

运行结果如下

到此这篇关于Matplotlib绘制子图的常见几种方法的文章就介绍到这了,更多相关Matplotlib绘制子图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • matplotlib绘制多个子图(subplot)的方法

    在matplotlib下,一个Figure对象可以包含多个子图(Axes),可以使用subplot()快速绘制,其调用形式如下: subplot(numRows, numCols, plotNum) 图表的整个绘图区域被分成numRows行和numCols列,plotNum参数指定创建的Axes对象所在的区域,如何理解呢? 如果numRows = 3,numCols = 2,那整个绘制图表样式为3X2的图片区域,用坐标表示为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).

  • matplotlib subplot绘制多个子图的方法示例

    在matplotlib下,一个Figure对象可以包含多个子图(Axes),可以使用subplot()快速绘制,其调用形式如下: subplot(numRows, numCols, plotNum) 图表的整个绘图区域被分成numRows行和numCols列,plotNum参数指定创建的Axes对象所在的区域,如何理解呢? 如果numRows = 3,numCols = 2,那整个绘制图表样式为3X2的图片区域,用坐标表示为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).

  • python使用matplotlib:subplot绘制多个子图的示例

    数据可视化的时候,常常需要将多个子图放在同一个画板上进行比较,python 的matplotlib包下的subplot可以帮助完成子功能. part1 绘制如下子图 import matplotlib.pyplot as plt plt.figure(figsize=(6,6), dpi=80) plt.figure(1) ax1 = plt.subplot(221) plt.plot([1,2,3,4],[4,5,7,8], color="r",linestyle = "-

  • matplotlib绘制多子图共享鼠标光标的方法示例

    matplotlib官方除了提供了鼠标十字光标的示例,还提供了同一图像内多子图共享光标的示例,其功能主要由widgets模块中的MultiCursor类提供支持. MultiCursor类与Cursor类参数类似,差异主要在: Cursor类参数只有一个ax,即需要显示光标的子图:MultiCursor类参数为canvas和axes,其中axes为需要共享光标的子图列表. Cursor类中,光标默认是十字线:MultiCursor类中,光标默认为竖线. 官方示例 import numpy as

  • Matplotlib绘制子图的常见几种方法

    前言 Matplotlib的可以把很多张图画到一个显示界面,在作对比分析的时候非常有用. 对应的有plt的subplot和figure的add_subplo的方法,参数可以是一个三位数字(例如111),也可以是一个数组(例如[1,1,1]),3个数字分别代表 子图总行数 子图总列数 子图位置 更多详情可以查看:matplotlib文档 下面贴出两种绘子图的代码 常用的三种方式 方式一:通过plt的subplot import numpy as np import pandas as pd imp

  • PHP读取文件的常见几种方法

    最近整理了PHP读取文件的常见几种方法,具体如下: 1.fread string fread ( int $handle , int $length ) fread() 从 handle 指向的文件中读取最多 length 个字节.该函数在读取完最多 length 个字节数,或到达 EOF 的时候,或(对于网络流)当一个包可用时,或(在打开用户空间流之后)已读取了 8192 个字节时就会停止读取文件,视乎先碰到哪种情况. fread() 返回所读取的字符串,如果出错返回 FALSE. <?php

  • Matplotlib 绘制饼图解决文字重叠的方法

    在使用Matplotlib 绘制饼图的时候有些时候一些数据的比列太小在饼图呈现的效果不明显 很容易被覆盖,为了解决这个问题以下就是我个人的心得. [未解决之前呈现的效果] 可以看到这个饼状图其他和硕士这2个部分占比很小而且比例相互覆盖,这让人看起来不舒服,所以针对这个问题我们可以调整下字体大小以及布局大小. 1.设置字体的大小 patches,l_text,p_text=plt.pie(values, spaces, labels, colors, '%.1f%%', shadow=True,

  • 利用python numpy+matplotlib绘制股票k线图的方法

    一.python numpy + matplotlib 画股票k线图 # -- coding: utf-8 -- import requests import numpy as np from matplotlib import pyplot as plt from matplotlib import animation fig = plt.figure(figsize=(8,6), dpi=72,facecolor="white") axes = plt.subplot(111) a

  • Python+matplotlib绘制多子图的方法详解

    目录 本文速览 1.matplotlib.pyplot api 方式添加子图 2.面向对象方式添加子图 3.matplotlib.pyplot add_subplot方式添加子图 4.matplotlib.gridspec.GridSpec方式添加子图 5.子图中绘制子图 6.任意位置绘制子图(plt.axes) 本文速览 matplotlib.pyplot api 绘制子图 面向对象方式绘制子图 matplotlib.gridspec.GridSpec绘制子图 任意位置添加子图 关于pyplo

  • python通过Matplotlib绘制常见的几种图形(推荐)

    目录 python通过Matplotlib绘制常见的几种图形 一.使用matplotlib对几种常见的图形进行绘制 1.柱状图 2.水平绘制柱状图 3.多个柱状图 4.叠加型柱状图 5.散点图 6.气泡图 7.直方图 8.箱线图 二.添加文字描述 1.文字描述一 2.文字描述二 三.多个图形描绘 subplots 四.使用Pandas 绘图 1.散点图 2.绘制柱状图 3.堆积的柱状图 4.水平的柱状图 5.直方图 6.箱线图 python通过Matplotlib绘制常见的几种图形 一.使用ma

  • matplotlib绘制两点间连线的几种方法实现

    目录 绘制方法<1> 绘制方法<2>使用pyplot绘制图像 绘制方法<3>使用axes类绘制图像 绘制方法<4>使用figure类绘制图像 为了找到matplotlib在两个点之间连线的方法真是费了好大功夫,本文主要介绍了 matplotlib绘制两点间连线的几种方法,具体如下 绘制方法 <1> 本文将通过最简单的模式拆解Matplotlib绘图的几个组成部分,将cover以下内容1. Create a dataset2. Create a c

  • Python+NumPy绘制常见曲线的方法详解

    目录 一.利萨茹曲线 二.计算斐波那契数列 三.方波 四.锯齿波和三角波 在NumPy中,所有的标准三角函数如sin.cos.tan等均有对应的通用函数. 一.利萨茹曲线 (Lissajous curve)利萨茹曲线是一种很有趣的使用三角函数的方式(示波器上显示出利萨茹曲线).利萨茹曲线由以下参数方程定义: x = A sin(at + n/2) y = B sin(bt) 利萨茹曲线的参数包括 A . B . a 和 b .为简单起见,我们令 A 和 B 均为1,设置的参数为 a=9 , b=

  • Python使用matplotlib绘制多个图形单独显示的方法示例

    本文实例讲述了Python使用matplotlib绘制多个图形单独显示的方法.分享给大家供大家参考,具体如下: 一 代码 import numpy as np import matplotlib.pyplot as plt #创建自变量数组 x= np.linspace(0,2*np.pi,500) #创建函数值数组 y1 = np.sin(x) y2 = np.cos(x) y3 = np.sin(x*x) #创建图形 plt.figure(1) ''' 意思是在一个2行2列共4个子图的图中,

随机推荐