关于keras中keras.layers.merge的用法说明
旧版本中:
from keras.layers import merge
merge6 = merge([layer1,layer2], mode = 'concat', concat_axis = 3)
新版本中:
from keras.layers.merge import concatenate
merge = concatenate([layer1, layer2], axis=3)
补充知识:keras输入数据的方法:model.fit和model.fit_generator
1.第一种,普通的不用数据增强的
from keras.datasets import mnist,cifar10,cifar100 (X_train, y_train), (X_valid, Y_valid) = cifar10.load_data() model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, shuffle=True, verbose=1, validation_data=(X_valid, Y_valid), )
2.第二种,带数据增强的 ImageDataGenerator,可以旋转角度、平移等操作。
from keras.preprocessing.image import ImageDataGenerator (trainX, trainY), (testX, testY) = cifar100.load_data() trainX = trainX.astype('float32') testX = testX.astype('float32') trainX /= 255. testX /= 255. Y_train = np_utils.to_categorical(trainY, nb_classes) Y_test = np_utils.to_categorical(testY, nb_classes) generator = ImageDataGenerator(rotation_range=15, width_shift_range=5./32, height_shift_range=5./32) generator.fit(trainX, seed=0) model.fit_generator(generator.flow(trainX, Y_train, batch_size=batch_size), steps_per_epoch=len(trainX) // batch_size, epochs=nb_epoch, callbacks=callbacks, validation_data=(testX, Y_test), validation_steps=testX.shape[0] // batch_size, verbose=1)
以上这篇关于keras中keras.layers.merge的用法说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
使用keras2.0 将Merge层改为函数式
不能再向以前一样使用 model.add(Merge([Model1,Model2])) 必须使用函数式 out = Concatenate()([model1.output, model2.output]) 补充知识:keras 新版接口修改 1. # b = MaxPooling2D((3, 3), strides=(1, 1), border_mode='valid', dim_ordering='tf')(x) b = MaxPooling2D((3, 3), strides=(1, 1
-
Keras使用ImageNet上预训练的模型方式
我就废话不多说了,大家还是直接看代码吧! import keras import numpy as np from keras.applications import vgg16, inception_v3, resnet50, mobilenet #Load the VGG model vgg_model = vgg16.VGG16(weights='imagenet') #Load the Inception_V3 model inception_model = inception_v3.I
-
使用Keras预训练模型ResNet50进行图像分类方式
Keras提供了一些用ImageNet训练过的模型:Xception,VGG16,VGG19,ResNet50,InceptionV3.在使用这些模型的时候,有一个参数include_top表示是否包含模型顶部的全连接层,如果包含,则可以将图像分为ImageNet中的1000类,如果不包含,则可以利用这些参数来做一些定制的事情. 在运行时自动下载有可能会失败,需要去网站中手动下载,放在"~/.keras/models/"中,使用WinPython则在"settings/.ke
-
keras 自定义loss损失函数,sample在loss上的加权和metric详解
首先辨析一下概念: 1. loss是整体网络进行优化的目标, 是需要参与到优化运算,更新权值W的过程的 2. metric只是作为评价网络表现的一种"指标", 比如accuracy,是为了直观地了解算法的效果,充当view的作用,并不参与到优化过程 在keras中实现自定义loss, 可以有两种方式,一种自定义 loss function, 例如: # 方式一 def vae_loss(x, x_decoded_mean): xent_loss = objectives.binary_
-
keras中模型训练class_weight,sample_weight区别说明
keras 中fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None) 官方文档
-
在keras下实现多个模型的融合方式
在网上搜过发现关于keras下的模型融合框架其实很简单,奈何网上说了一大堆,这个东西官方文档上就有,自己写了个demo: # Function:基于keras框架下实现,多个独立任务分类 # Writer: PQF # Time: 2019/9/29 import numpy as np from keras.layers import Input, Dense from keras.models import Model import tensorflow as tf # 生成训练集 data
-
使用keras实现densenet和Xception的模型融合
我正在参加天池上的一个竞赛,刚开始用的是DenseNet121但是效果没有达到预期,因此开始尝试使用模型融合,将Desenet和Xception融合起来共同提取特征. 代码如下: def Multimodel(cnn_weights_path=None,all_weights_path=None,class_num=5,cnn_no_vary=False): ''' 获取densent121,xinception并联的网络 此处的cnn_weights_path是个列表是densenet和xce
-
关于keras中keras.layers.merge的用法说明
旧版本中: from keras.layers import merge merge6 = merge([layer1,layer2], mode = 'concat', concat_axis = 3) 新版本中: from keras.layers.merge import concatenate merge = concatenate([layer1, layer2], axis=3) 补充知识:keras输入数据的方法:model.fit和model.fit_generator 1.第一
-
Keras中的多分类损失函数用法categorical_crossentropy
from keras.utils.np_utils import to_categorical 注意:当使用categorical_crossentropy损失函数时,你的标签应为多类模式,例如如果你有10个类别,每一个样本的标签应该是一个10维的向量,该向量在对应有值的索引位置为1其余为0. 可以使用这个方法进行转换: from keras.utils.np_utils import to_categorical categorical_labels = to_categorical(int_
-
keras中epoch,batch,loss,val_loss用法说明
1.epoch Keras官方文档中给出的解释是:"简单说,epochs指的就是训练过程接中数据将被"轮"多少次" (1)释义: 训练过程中当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一个epoch,网络会在每个epoch结束时报告关于模型学习进度的调试信息. (2)为什么要训练多个epoch,即数据要被"轮"多次 在神经网络中传递完整的数据集一次是不够的,对于有限的数据集(是在批梯度下降情况下),使用一个迭代过程,更新权重一
-
Keras中 ImageDataGenerator函数的参数用法
一.Keras ImageDataGenerator参数 from keras.preprocessing.image import ImageDataGenerator keras.preprocessing.image.ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization = False, samplewise_std_normalization
-
keras中的backend.clip用法
如下所示: keras.backend.clip(x, min_value, max_value) 逐元素clip(将超出指定范围的数强制变为边界值) 参数 x: 张量或变量. min_value: Python 浮点或整数. max_value: Python 浮点或整数. 返回 一个张量. import tensorflow as tf from keras import backend a = tf.constant(2.1) #定义tensor常量 b = backend.clip(a,
-
浅谈keras中的Merge层(实现层的相加、相减、相乘实例)
[题目]keras中的Merge层(实现层的相加.相减.相乘) 详情请参考: Merge层 一.层相加 keras.layers.Add() 添加输入列表的图层. 该层接收一个相同shape列表张量,并返回它们的和,shape不变. Example import keras input1 = keras.layers.Input(shape=(16,)) x1 = keras.layers.Dense(8, activation='relu')(input1) input2 = keras.la
-
keras中的卷积层&池化层的用法
卷积层 创建卷积层 首先导入keras中的模块 from keras.layers import Conv2D 卷积层的格式及参数: Conv2D(filters, kernel_size, strides, padding, activation='relu', input_shape) filters: 过滤器数量 kernel_size:指定卷积窗口的高和宽的数字 strides: 卷积stride,如果不指定任何值,则strides设为1 padding: 选项包括'valid'和'sa
-
keras中的loss、optimizer、metrics用法
用keras搭好模型架构之后的下一步,就是执行编译操作.在编译时,经常需要指定三个参数 loss optimizer metrics 这三个参数有两类选择: 使用字符串 使用标识符,如keras.losses,keras.optimizers,metrics包下面的函数 例如: sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', opt
-
Keras中的两种模型:Sequential和Model用法
在Keras中有两种深度学习的模型:序列模型(Sequential)和通用模型(Model).差异在于不同的拓扑结构. 序列模型 Sequential 序列模型各层之间是依次顺序的线性关系,模型结构通过一个列表来制定. from keras.models import Sequential from keras.layers import Dense, Activation layers = [Dense(32, input_shape = (784,)), Activation('relu')
-
Keras 中Leaky ReLU等高级激活函数的用法
在用Keras来实现CNN等一系列网络时,我们经常用ReLU作为激活函数,一般写法如下: from keras import layers from keras import models model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(layers.MaxPooling2D((2, 2))) model.a
随机推荐
- 正则表达式中特殊符号及正则表达式的几种方法总结(replace,test,search)
- 浅谈Oracle 11g 发行版2 新安装后关于登录的一些基本操作
- AR28/AR46系列路由器用地址池方式做nat的典型配置方法
- jQuery正则表达式的使用方法步骤详解
- 以实例讲解Objective-C中的KVO与KVC机制
- JavaScript 网页中实现一个计算当年还剩多少时间的倒数计时程序
- ASP.NET MVC3 SEO优化:利用Routing特性提高站点权重
- PHP防止跨域提交表单
- python中模块查找的原理与方法详解
- C语言中读取时间日期的基本方法
- php实现获取文件mime类型的方法
- javascript 函数调用的对象和方法
- Android学习笔记--通过Application传递数据代码示例
- 模拟多级复选框效果的jquery代码
- jquery 文本上下无缝滚动,鼠标放上去就停止 小例子
- IIS常见问题与错误及其解决方案
- android开发教程之switch控件使用示例
- Android RadioGroup 设置某一个选中或者不可选中的方法
- axios post提交formdata的实例
- Java开发中的volatile你必须要了解一下