Python类的动态绑定实现原理

使用实例引用类的属性时,会发生动态绑定。即python会在实例每次引用类属性时,将对应的类属性绑定到实例上。

动态绑定的例子:

class A:
  def test1(self):
    print("hello")

  def test2(self):
    print("world")

def bound():
  a = A()
  a.test1()
  A.test1 = A.test2
  a.test1()

if __name__ == "__main__":
  bound()

输出结果:

hello2 world

从上述代码中可以看到,类方法的变化是实时影响实例对方法的调用的,这说明python是在实例调用方法的过程中动态地查找类方法。

动态绑定的代价:

class A:
  def test(self):
    pass
def one_loop(limited_time):
  a = A()
  for i in range(limited_time):
    a.test()
  f = a.test
  for i in range(limited_time):
    f()

上图两个循环中,一个调用a.test(),不断进行动态绑定,另一个则先把a.test赋值给f,只有一次动态绑定,通过对两个循环计时,测试动态绑定的代价。

输出结果:

1 [0.0, 0.0, 0.0, 0.0, 0.0, 0.0009999275207519531, 0.008995771408081055, 0.19991111755371094, 1.2715933322906494, 15.831915855407715]
2 [0.0, 0.0, 0.0, 0.0, 0.0, 0.12503726671039295, 0.09472344399590288, 0.1999776288967874, 0.131608969147562, 0.1553209370384522]

折线图中横坐标为log10(循环次数),纵坐标为秒数。

输出数据中,第一行为动态绑定和一次绑定耗费时间的差值,第二行为差值占动态绑定总时间的比例。

可以看出,在次数很小的时候,两者基本没有差距,或者说差距忽略不计。

在10^7次循环,即千万次循环的时候,动态绑定与静态绑定的耗费时间才出现了明显差异,当循环次数达到十亿级的时候,耗费时间相差15秒之多,约占总时间的15%。

由上可知,动态绑定效率低于静态绑定,但由于绑定代价耗时很少,在次数很少的时候基本没有影响。

动态绑定的优点:

class A:
  def test_hello(self):
    print("hello")

def test_world(self):
  print("world")

def main():
  s = A()
  # 提前绑定
  f = s.test_hello
  # 改变方法
  A.test_hello = test_world
  f()
  # 动态绑定
  s.test_hello()

if __name__ == "__main__":
  main()

输出结果:

hello2 world

类方法的变动能够实时反应在动态绑定上,而提前绑定则无法感知到类方法的变动。

总结:

1. 一次动态绑定代价很小,当绑定次数少的时候基本不影响效率,当绑定次数达到千万级时影响才会很显著。

2. 动态绑定实时跟踪类方法的变动,更具灵活性。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python利用MethodType绑定方法到类示例代码

    前言 本文主要给大家介绍了关于python用MethodType绑定方法到类的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍: 对python中MethodType不熟悉的朋友们可以先看看这篇文章 问题引出 先看下面一段代码: from types import MethodType def set_age(self,age): self.age=age class Stu(object): pass Stu.set_age=MethodType(set_age,Stu)

  • python类的方法属性与方法属性的动态绑定代码详解

    动态语言与静态语言有很多不同,最大的特性之一就是可以实现动态的对类和实例进行修改,在Python中,我们创建了一个类后可以对实例和类绑定心的方法或者属性,实现动态绑定. 最近在学习python,纯粹是自己的兴趣爱好,然而并没有系统地看python编程书籍,觉得上面描述过于繁琐,在网站找了一些学习的网站,发现廖雪峰老师的网站上面的学习资源很不错,而且言简意赅,提取了一些python中的重要的语法和案例.重要的是可以在线测试python的运行代码,缺点就是没有系统的看python的书籍,不能及时的将

  • Python类的绑定方法和非绑定方法实例解析

    一.绑定方法 1.对象的绑定方法 首先我们明确一个知识点,凡是类中的方法或函数,默认情况下都是绑定给对象使用的.下面,我们通过实例,来慢慢解析绑定方法的应用. class People: def __init__(self,name,age): self.name = name self.age = age def talk(self): pass p = People('xiaohua',18) print(p.talk) 输出结果: <bound method People.talk of

  • python中类和实例如何绑定属性与方法示例详解

    前言 python类与实例的方法的调用中觉得云里雾里,思考之后将自己的想法记录下,一来加深自己理解,巩固自己记忆,而来帮助一些想要学习python的朋友理解这门抽象的语言,由于Python是动态语言,类以及根据类创建的实例可以任意绑定属性以及方法,下面分别介绍. 1.类绑定属性 类绑定属性可以直接在class中定义属性,这种属性是类属. class Student(object): name = 'Student' 这个属性虽然归类所有,但类的所有实例都可以访问到. class Student(

  • Python中绑定与未绑定的类方法用法分析

    本文实例讲述了Python中绑定与未绑定的类方法.分享给大家供大家参考,具体如下: 像函数一样,Python中的类方法也是一种对象.由于既可以通过实例也可以通过类来访问方法,所以在Python里有两种风格: 未绑定的类方法:没有self 通过类来引用方法返回一个未绑定方法对象.要调用它,你必须显示地提供一个实例作为第一个参数. 绑定的实例方法:有self 通过实例访问方法返回一个绑定的方法对象.Python自动地给方法绑定一个实例,所以我们调用它时不用再传一个实例参数. 两种方法都是对象,它们可

  • Python类的动态绑定实现原理

    使用实例引用类的属性时,会发生动态绑定.即python会在实例每次引用类属性时,将对应的类属性绑定到实例上. 动态绑定的例子: class A: def test1(self): print("hello") def test2(self): print("world") def bound(): a = A() a.test1() A.test1 = A.test2 a.test1() if __name__ == "__main__": bo

  • Python类继承和多态原理解析

    这篇文章主要介绍了python类继承和多态原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 现在属于是老年人的脑子,东西写着写着就忘了,东西记着记着就不知道了.之前学C++的时候就把类.对象这块弄得乱七八糟,现在是因为很想玩python,所以就看看python的类和对象. 就像说的,类有三个特征:封装.继承.多态. 1.封装:类封装了一些方法,可通过一定的规则约定方法进行访问权限. C++中的成员变量有public.private.pto

  • Python类class参数self原理解析

    1.self只有在类的方法中才会有,其他函数或方法是不必带self的. 2.在调用时不必传入相应的参数. 3.在类的方法中(如__init__),第一参数永远是self,表示创建的类实例本身,而不是类本身. 4.可以把对象的各种属性绑定到self. 5.self代表当前对象的地址.self能避免非限定调用造成的全局变量. 6.self不是python的关键字,也可以用其他名称命名,但是为了规范和便于读者理解,推荐使用self. python中的self等价于C++中的self指针和Java.C#

  • Python设计模式之解释器模式原理与用法实例分析

    本文实例讲述了Python设计模式之解释器模式原理与用法.分享给大家供大家参考,具体如下: 解释器模式(Interpreter Pattern):给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子. 下面是一个解释器模式的demo: #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'Andy' """ 大话设计模式 设计模式--解释器模式 解释器模式(Interpr

  • Python 类的私有属性和私有方法实例分析

    本文实例讲述了Python 类的私有属性和私有方法.分享给大家供大家参考,具体如下: xx:公有变量 _xx:公有变量或方法,不能通过import导入其他模块(只有模块内部使用).类对象和子类可以访问 __xx:私有变量或方法(伪私有),类外部不能直接访问. __xx__:公有变量或方法,子类可以访问.魔法方法或属性(例如:__init__),不推荐这样命名. xx_:公有变量或方法.一般为了避免和python关键字冲突,不推荐这样命名. 在 定义属性或方法时,在 属性名或者方法名前 增加 两个

  • Python设计模式之组合模式原理与用法实例分析

    本文实例讲述了Python设计模式之组合模式原理与用法.分享给大家供大家参考,具体如下: 组合模式(Composite Pattern):将对象组合成成树形结构以表示"部分-整体"的层次结构,组合模式使得用户对单个对象和组合对象的使用具有一致性. 下面是一个组合模式的demo: #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'Andy' """ 大话设计模式 设计模式--组合模式 组合模

  • Python设计模式之桥接模式原理与用法实例分析

    本文实例讲述了Python设计模式之桥接模式原理与用法.分享给大家供大家参考,具体如下: 桥接模式(Bridge Pattern):将抽象部分与它的实现部分分离,使它们都可以独立地变化. 下面是一个桥接模式的demo: #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'Andy' """ 大话设计模式 设计模式--桥接模式 桥接模式(Bridge Pattern):将抽象部分与它的实现部分分离,使它们都可以独

  • Python设计模式之迭代器模式原理与用法实例分析

    本文实例讲述了Python设计模式之迭代器模式原理与用法.分享给大家供大家参考,具体如下: 迭代器模式(Iterator Pattern):提供方法顺序访问一个聚合对象中各元素,而又不暴露该对象的内部表示. 下面是一个迭代器模式的demo: #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'Andy' """ 大话设计模式 设计模式--迭代器模式 迭代器模式(Iterator Pattern):提供方法顺序访

  • Python设计模式之备忘录模式原理与用法详解

    本文实例讲述了Python设计模式之备忘录模式原理与用法.分享给大家供大家参考,具体如下: 备忘录模式(Memento Pattern):不破坏封装性的前提下捕获一个对象的内部状态,并在该对象之外保存这个状态,这样已经后就可将该对象恢复到原先保存的状态 下面是一个备忘录模式的demo: #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'Andy' """ 大话设计模式 设计模式--备忘录模式 备忘录模式(Me

随机推荐