opencv中图像叠加/图像融合/按位操作的实现

一、图像叠加:cv2.add

res=cv2.add(img1, img2) 或者res=cv2.add(img1, 标量值)

参数说明: cv2.add将两个图片对应位置的像素的值相加,或者将每个像素的值加上一个标量值,大于255的像素值就设置成255。

有一点需要注意的是,如果是两张图片相加,那么一定要注意两者的尺寸和通道数必须是一样的;如果是标量值,这个值既可以是整数也可以是浮点数,加合适的标量值一般是为了提高亮度。

import cv2

img1 = cv2.imread('1.jpg')
img2 = cv2.imread('2.jpg')
print(img1.shape)
print(img2.shape)
#输出: (1039, 750, 3)
   #(1050, 700, 3)

img2.resize((img1.shape[0],img1.shape[1],3))
print(img2.shape)
#输出:(1039, 750, 3)

res=cv2.add(img1,img2)#或者res=cv2.add(img1,10)

上面说了,cv2.add会把超过255的值设置为255,但是numpy里的加法进行的是模运算,请看下面的例子:

import cv2
import numpy as np

x = np.uint8([250])
y = np.uint8([10])

print( cv2.add(x,y) ) # 250+10 = 260 => 255
print( x+y )     # 250+10 = 260 % 256 = 4

输出:
[[255]]
[4]

二、图像融合:cv2.addWeighted

cv2.addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) → dst

dst = src1 * alpha + src2 * beta + gamma

src1 – 第一张图片
alpha – 第一张图片的权重
src2 – 与第一张大小和通道数相同的图片
beta – 第二张图片的权重
gamma – 加到每个总和上的标量,相当于调亮度
dst – 输出

当然,这里也要注意图片尺寸要一样

import cv2
import numpy as np

img1 = cv2.imread('1.jpg')
img2 = cv2.imread('2.jpg')
#统一图片大小
img2 = cv2.resize(img2,(img1.shape[1],img1.shape[0]))

dst = cv2.addWeighted(img1,0.5,img2,0.5,0)

cv2.imshow('dst',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

你可以根据需要自己调整两个图片的权重,以达到不同的显示效果

三、图像的按位操作:cv2.bitwise_and

'''
注意,src1和src2的形状要保持一致,一般都是同一张图像,
关键是在于mask,mask必须得是8-bit单通道array,尺寸也要和src相同
'''
bitwise_and(src1, src2[, dst[, mask]]) -> dst

如果将两幅图片直接相加会改变图片的颜色,如果用图像混合,则会改变图片的透明度,所以我们需要用按位操作。首先来了解一下掩膜(mask)的概念:掩膜是用一副二值化图片对另外一幅图片进行局部的遮挡,看下图就一目了然了:(此处参考了 原文链接)

所以我们的思路就是把原图中要放logo的区域抠出来,再把logo放进去就行了:

import cv2
import numpy as np

img1 = cv2.imread('lena.jpg')
img2 = cv2.imread('opencv-logo-white.jpg')

# 把logo放在左上角,所以我们只关心这一块区域
rows, cols = img2.shape[:2]
roi = img1[:rows, :cols]

# 创建掩膜
img2gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
ret, mask = cv2.threshold(img2gray, 10, 255, cv2.THRESH_BINARY)
mask_inv = cv2.bitwise_not(mask)

# 保留除logo外的背景
img1_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)
dst = cv2.add(img1_bg, img2) # 进行融合
img1[:rows, :cols] = dst # 融合后放在原图上

cv2.imshow('res',img1)
cv2.waitKey(0)
cv2.destroyAllWindows()

其实看到这,很多人会有一些疑问,包括我自己刚开始的时候也是有疑问:

为什么要用两个roi进行与运算,roi&roi不还是roi本身吗?

mask和roi尺寸也一样,而且我们想要在roi中去除的区域在mask中对应位置的像素值正好也为0,为什么不让roi和mask两者直接相与呢?

这两个问题在我查资料的时候是这么说的,仅供参考:

  • 因为mask是单通道的array,这是规定的,而roi是三通道,所以两者不能直接相与。
  • 于是先利用roi和roi相与得到roi本身,而mask可以控制相与之后输出数据的某些元素发生变化,而相与之后的输出就是roi,所以此时相当于直接对roi进行操作,使roi中和mask中像素值为0的像素点对应的像素点的像素值也为0,也即变成黑的,这就达到了我们想要的效果。

到此这篇关于opencv中图像叠加/图像融合/按位操作的实现的文章就介绍到这了,更多相关opencv 图像叠加/图像融合/按位操作内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python+OpenCV实现图像融合的原理及代码

    根据导师作业安排,在学习数字图像处理(刚萨雷斯版)第六章 彩色图像处理 中的彩色模型后,导师安排了一个比较有趣的作业: 融合原理为: 1 注意:遥感原RGB图image和灰度图Grayimage为测试用的输入图像: 2 步骤:(1)将RGB转换为HSV空间(H:色调,S:饱和度,V:明度): (2)用Gray图像诶换掉HSV中的V: (3)替换后的HSV转换回RGB空间即可得到结果. 书上只介绍了HSI彩色模型,并没有说到HSV,所以需要网上查找资料. Python代码如下: import cv

  • opencv中图像叠加/图像融合/按位操作的实现

    一.图像叠加:cv2.add res=cv2.add(img1, img2) 或者res=cv2.add(img1, 标量值) 参数说明: cv2.add将两个图片对应位置的像素的值相加,或者将每个像素的值加上一个标量值,大于255的像素值就设置成255. 有一点需要注意的是,如果是两张图片相加,那么一定要注意两者的尺寸和通道数必须是一样的:如果是标量值,这个值既可以是整数也可以是浮点数,加合适的标量值一般是为了提高亮度. import cv2 img1 = cv2.imread('1.jpg'

  • 详解在OpenCV中实现的图像标注技术

    目录 目录 图像注解 对图片注释的需求 图像注解的类型 分类法 物体检测 语义分割 用OpenCV实现图像注解 包围盒方法 KNN方法进行分割 结论 参考文献 图像标注在计算机视觉中很重要,计算机视觉是一种技术,它允许计算机从数字图像或视频中获得高水平的理解力,并以人类的方式观察和解释视觉信息.注释,通常被称为图片标签,是大多数计算机视觉模型发展中的一个关键阶段.本文将重点讨论在OpenCV的帮助下创建这些注释.以下是将要涉及的主题. 目录 图像注解 对图像注释的需求 图像注解的类型 用Open

  • python中opencv图像叠加、图像融合、按位操作的具体实现

    目录 1图像叠加 2图像融合 3按位操作 1图像叠加 可以通过OpenCV函数cv.add()或简单地通过numpy操作添加两个图像,res = img1 + img2.两个图像应该具有相同的深度和类型,或者第二个图像可以是标量值. NOTE: OpenCV添加是饱和操作,也就是有上限值,而Numpy添加是模运算. 添加两个图像时, OpenCV功能将提供更好的结果.所以总是更好地坚持OpenCV功能. 代码: import cv2 import numpy as np x = np.uint8

  • 利用OpenCV中对图像数据进行64F和8U转换的方式

    在OpenCV中很多对数据的运算都需要转换为64F类型,比如伽玛变换,这个很明显要求幂的底数是double类型~ 而cvShowImage()又要求是U8才能显示,否则显示出来是一片空白! 所以经常要进行转换,怎么做呢?看了下面的几行代码你就知道了! IplImage *pSrcImage = cvLoadImage("pout.jpg", CV_LOAD_IMAGE_UNCHANGED); IplImage *pGrayImage_8U = cvCreateImage(cvGetSi

  • Python OpenCV中的numpy与图像类型转换操作

    Python OpenCV存储图像使用的是Numpy存储,所以可以将Numpy当做图像类型操作,操作之前还需进行类型转换,转换到int8类型 import cv2 import numpy as np # 使用numpy方式创建一个二维数组 img = np.ones((100,100)) # 转换成int8类型 img = np.int8(img) # 颜色空间转换,单通道转换成多通道, 可选可不选 img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) cv2

  • OpenCV中图像通道操作的深入讲解

    目录 1.基本介绍 2.通道拆分 2.1通过索引拆分 2.2通过函数拆分 3.通道合并 总结 1.基本介绍 在OpenCV中,图像通道是按照 B 通道→G 通道→R 通道的顺序存储的.在图像处理过程中,可以根据需要对通道进行拆分和合并. 2.通道拆分 对于RGB图像,可以索引的方式或者函数的方式分别拆分出其RGB通道. b = img[ : , : , 0 ] g = img[ : , : , 1 ] r = img[ : , : , 2 ] 2.1通过索引拆分 import cv2 lena=

  • Python+OpenCV实现六种常用图像特效

    目录 图像融合 灰度处理 颜色反转 灰度反转 彩色反转 马赛克效果 毛玻璃效果 浮雕效果 图像融合 按照一定的比例将两张图片融合在一起 addWeighted()方法: 参数1第一张图片矩阵 参数2第一张图片矩阵的权重 参数3第二张图片矩阵 参数4第二张图片矩阵的权重 融合之后的偏移量 进行叠加的两张图片宽高应该相同 叠加之后的像素偏移值如果填的话不要填太大,超过255会导致图像偏白 import cv2 import cv2 as cv img = cv.imread("img/lena.jp

  • 使用Python OpenCV为CNN增加图像样本的实现

    我们在做深度学习的过程中,经常面临图片样本不足.不平衡的情况,在本文中,作者结合实际工作经验,通过图像的移动.缩放.旋转.增加噪声等图像变换技术,能快速.简便的增加样本数量. 本文所有案例,使用OpenCV跨平台计算机视觉库,在Python3.6上实现,关于Python及OpenCV安装使用,请参照本人早先资料,详见参考内容. 1. 图片拼接及平移 1.1. 图像移动 图像平移是将图像的所有像素坐标进行水平或垂直方向移动,也就是所有像素按照给定的偏移量在水平方向上沿x轴.垂直方向上沿y轴移动.

  • opencv与numpy的图像基本操作

    1. 像素基本操作 1.1 读取.修改像素 可以通过[行,列]坐标来访问像素点数据,对于多通道数据,返回一个数组,包含所有通道的值,对于单通道数据(如gray),返回指定坐标的值,也可以通过 [行,列,通道index] 来访问某坐标某通道的值. >>> import cv2 >>> import numpy as np >>> img = cv2.imread('messi5.jpg') >>> px = img[100,100] &

  • opencv python如何实现图像二值化

    这篇文章主要介绍了opencv python如何实现图像二值化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑,之后为白 # 有全局和局部两种 # 在使用全局阈值时,我们就是随便给了一个数来做阈值,那我们怎么知道我们选取的这个数的好坏呢?答

随机推荐