Python图像处理之图像的灰度线性变换

目录
  • 一.图像灰度线性变换原理
  • 二.图像灰度上移变换
  • 三.图像对比度增强变换
  • 四.图像对比度减弱变换
  • 五.图像灰度反色变换

一.图像灰度线性变换原理

图像的灰度线性变换是通过建立灰度映射来调整原始图像的灰度,从而改善图像的质量,凸显图像的细节,提高图像的对比度。

灰度线性变换的计算公式如下所示:

该公式中DB表示灰度线性变换后的灰度值,DA表示变换前输入图像的灰度值,α和b为线性变换方程f(D)的参数,分别表示斜率和截距。

  • 当α=1,b=0时,保持原始图像
  • 当α=1,b!=0时,图像所有的灰度值上移或下移
  • 当α=-1,b=255时,原始图像的灰度值反转
  • 当α>1时,输出图像的对比度增强
  • 当0<α<1时,输出图像的对比度减小
  • 当α<0时,原始图像暗区域变亮,亮区域变暗,图像求补

如图所示,显示了图像的灰度线性变换对应的效果图:

二.图像灰度上移变换

该算法将实现图像灰度值的上移,从而提升图像的亮度,其实现代码如下所示。由于图像的灰度值位于0至255区间之内,所以需要对灰度值进行溢出判断。

# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('miao.png')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像灰度上移变换 DB=DA+50
for i in range(height):
for j in range(width):
if (int(grayImage[i,j]+50) > 255):
gray = 255
else:
gray = int(grayImage[i,j]+50)
result[i,j] = np.uint8(gray)
#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其输出结果如下图所示,图像的所有灰度值上移50,图像变得更白了。注意,纯黑色对应的灰度值为0,纯白色对应的灰度值为255。

三.图像对比度增强变换

该算法将增强图像的对比度,Python实现代码如下所示:

# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('miao.png')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像对比度增强变换 DB=DA*1.5
for i in range(height):
for j in range(width):
if (int(grayImage[i,j]*1.5) > 255):
gray = 255
else:
gray = int(grayImage[i,j]*1.5)

result[i,j] = np.uint8(gray)
#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)

其输出结果如下图所示,图像的所有灰度值增强1.5倍。

四.图像对比度减弱变换

该算法将减弱图像的对比度,Python实现代码如下所示:

# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('miao.png')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像对比度减弱变换 DB=DA*0.8
for i in range(height):
for j in range(width):
gray = int(grayImage[i,j]*0.8)
result[i,j] = np.uint8(gray)
#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其输出结果如下图所示,图像的所有灰度值减弱,图像变得更暗。

五.图像灰度反色变换

反色变换又称为线性灰度求补变换,它是对原图像的像素值进行反转,即黑色变为白色,白色变为黑色的过程。其Python实现代码如下所示:

# -*- coding: utf-8 -*-
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('miao.png')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像灰度反色变换 DB=255-DA
for i in range(height):
for j in range(width):
gray = 255 - grayImage[i,j]
result[i,j] = np.uint8(gray)
#显示图像
cv2.imshow("Gray Image", grayImage)
cv2.imshow("Result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其输出结果如下图所示,图像处理前后的灰度值是互补的。

图像灰度反色变换在医学图像处理中有一定的应用,如下图所示:

到此这篇关于Python图像处理之图像的灰度线性变换的文章就介绍到这了,更多相关Python图像线性变换内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python数字图像处理实现图像的形变与缩放

    目录 skimage的transform模块 1.改变图片尺寸resize 2.按比例缩放rescale 3.旋转 rotate 4.图像金字塔 skimage的transform模块 图像的形变与缩放,使用的是skimage的transform模块,函数比较多,功能齐全. 1.改变图片尺寸resize 函数格式为: skimage.transform.resize(image,output_shape) image: 需要改变尺寸的图片 output_shape: 新的图片尺寸 from sk

  • Python图像运算之图像灰度线性变换详解

    目录 一.灰度线性变换 二.图像灰度上移变换 三.图像对比度增强变换 四.图像对比度减弱变换 五.图像灰度反色变换 六.总结 一.灰度线性变换 图像的灰度线性变换是通过建立灰度映射来调整原始图像的灰度,从而改善图像的质量,凸显图像的细节,提高图像的对比度.灰度线性变换的计算公式如(12-1)所示: 该公式中DB表示灰度线性变换后的灰度值,DA表示变换前输入图像的灰度值,α和b为线性变换方程f(D)的参数,分别表示斜率和截距[1-4]. 当α=1,b=0时,保持原始图像 当α=1,b!=0时,图像

  • python数字图像处理之边缘轮廓检测

    目录 引言 1.查找轮廓(find_contours) 2.逼近多边形曲线 引言 在前面的python数字图像处理简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测. 本篇我们讲解一些其它方法来检测轮廓. 1.查找轮廓(find_contours) measure模块中的find_contours()函数,可用来检测二值图像的边缘轮廓. 函数原型为: skimage.measure.find_contours(array, level) array: 一个二值

  • Python实现图像压缩和图像处理详解

    目录 入门了解1.颜色 入门了解 2. 像素 用Pillow处理图像 1. 读取和显示图像 2. 剪裁图像 3. 生成缩略图 4. 缩放和黏贴图像 5. 旋转和翻转 6. 操作像素 7. 滤镜效果 使用Pillow绘图 总结 入门了解1.颜色 如果你有使用颜料画画的经历,那么一定知道混合红.黄.蓝三种颜料可以得到其他的颜色,事实上这三种颜色就是美术中的三原色,它们是不能再分解的基本颜色.在计算机中,我们可以将红.绿.蓝三种色光以不同的比例叠加来组合成其他的颜色,因此这三种颜色就是色光三原色.在计

  • python数字图像处理之对比度与亮度调整示例

    目录 skimage包的exposure模块 1.gamma调整 2.log对数调整 3.判断图像对比度是否偏低 4.调整强度 skimage包的exposure模块 图像亮度与对比度的调整,是放在skimage包的exposure模块里面 1.gamma调整 对原图像的像素,进行幂运算,得到新的像素值.公式中的g就是gamma值. 如果gamma>1, 新图像比原图像暗 如果gamma<1,新图像比原图像亮 函数格式为:skimage.exposure.adjust_gamma(image,

  • Python解决线性代数问题之矩阵的初等变换方法

    定义一个矩阵初等行变换的类 class rowTransformation(): array = ([[],[]]) def __init__(self,array): self.array = array def __mul__(self, other): pass # 交换矩阵的两行 def exchange_two_lines(self,x,y): a = self.array[x-1:x].copy() self.array[x-1:x] = self.array[y-1:y] self

  • Python图像运算之图像灰度非线性变换详解

    目录 一.图像灰度非线性变换 二.图像灰度对数变换 三.图像灰度伽玛变换 四.总结 一.图像灰度非线性变换 原始图像的灰度值按照DB=DA×DA/255的公式进行非线性变换,其代码如下: # -*- coding: utf-8 -*- # By:Eastmount import cv2 import numpy as np import matplotlib.pyplot as plt #读取原始图像 img = cv2.imread('luo.png') #图像灰度转换 grayImage =

  • Python图像处理之图像的灰度线性变换

    目录 一.图像灰度线性变换原理 二.图像灰度上移变换 三.图像对比度增强变换 四.图像对比度减弱变换 五.图像灰度反色变换 一.图像灰度线性变换原理 图像的灰度线性变换是通过建立灰度映射来调整原始图像的灰度,从而改善图像的质量,凸显图像的细节,提高图像的对比度. 灰度线性变换的计算公式如下所示: 该公式中DB表示灰度线性变换后的灰度值,DA表示变换前输入图像的灰度值,α和b为线性变换方程f(D)的参数,分别表示斜率和截距. 当α=1,b=0时,保持原始图像 当α=1,b!=0时,图像所有的灰度值

  • Python图像处理之图像融合与ROI区域绘制详解

    目录 一.图像融合 二.图像ROI区域定位 三.图像属性 (1)shape (2)size (3)dtype 四.图像通道分离及合并 (1)split()函数 (2)merge()函数 五.图像类型转换 六.总结 一.图像融合 图像融合通常是指多张图像的信息进行融合,从而获得信息更丰富的结果,能够帮助人们观察或计算机处理.图5-1是将两张不清晰的图像融合得到更清晰的效果图. 图像融合是在图像加法的基础上增加了系数和亮度调节量,它与图像的主要区别如下[1-3]: 图像加法:目标图像 = 图像1 +

  • Python图像处理之图像量化处理详解

    目录 一.图像量化处理原理 二.图像量化实现 三.图像量化等级对比 四.K-Means聚类实现量化处理 五.总结 一.图像量化处理原理 量化(Quantization)旨在将图像像素点对应亮度的连续变化区间转换为单个特定值的过程,即将原始灰度图像的空间坐标幅度值离散化.量化等级越多,图像层次越丰富,灰度分辨率越高,图像的质量也越好:量化等级越少,图像层次欠丰富,灰度分辨率越低,会出现图像轮廓分层的现象,降低了图像的质量.图8-1是将图像的连续灰度值转换为0至255的灰度级的过程[1-3]. 如果

  • Python图像处理之图像的读取、显示与保存操作【测试可用】

    本文实例讲述了Python图像处理之图像的读取.显示与保存操作.分享给大家供大家参考,具体如下: python作为机器学习和图像处理的利器,收到越来越多的推崇,特别是在图像处理领域,越来越多的研究和开发开始转向使用python语言,下面就介绍python图像处理中最基本的操作,即图像的读取显示与保存. 1.使用PIL模块 代码如下: # -*- coding:utf-8 -*- from PIL import Image import numpy as np def test_pil(): #读

  • Python图像处理之图像的缩放、旋转与翻转实现方法示例

    本文实例讲述了Python图像处理之图像的缩放.旋转与翻转实现方法.分享给大家供大家参考,具体如下: 图像的几何变换,如缩放.旋转和翻转等,在图像处理中扮演着重要的角色,python中的Image类分别提供了这些操作的接口函数,下面进行逐一介绍. 1.图像的缩放 图像的缩放使用resize()成员函数,直接在入参中指定缩放后的尺寸即可,示例如下: #-*- coding: UTF-8 -*- from PIL import Image #读取图像 im = Image.open("lenna.j

  • Python图像处理之图像金字塔详解

    目录 一.图像金字塔原理 二.图像向上取样 三.图像向下取样 四.总结 一.图像金字塔原理 上一篇文章讲解的图像采样处理可以降低图像的大小,本文将补充图像金字塔知识,了解专门用于图像向上采样和向下采样的pyrUp()和pyrDown()函数. 图像金字塔是指由一组图像且不同分别率的子图集合,它是图像多尺度表达的一种,以多分辨率来解释图像的结构,主要用于图像的分割或压缩.一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合.如图10-1所示,它包括了四层图像,将

  • Python OpenCV图像处理之图像滤波特效详解

    目录 1分类 2邻域滤波 2.1线性滤波 2.2非线性滤波 3频域滤波 3.1低通滤波 3.2高通滤波 1 分类 图像滤波按图像域可分为两种类型: 邻域滤波(Spatial Domain Filter),其本质是数字窗口上的数学运算.一般用于图像平滑.图像锐化.特征提取(如纹理测量.边缘检测)等,邻域滤波使用邻域算子——利用给定像素周围像素值以决定此像素最终输出的一种算子 频域滤波(Frequency Domain Filter),其本质是对像素频率的修改.一般用于降噪.重采样.图像压缩等. 按

  • python数字图像处理之图像的批量处理

    目录 正文 图片集合函数 批量读取 批量转换为灰度图 批量保存 正文 有些时候,我们不仅要对一张图片进行处理,可能还会对一批图片处理.这时候,我们可以通过循环来执行处理,也可以调用程序自带的图片集合来处理. 图片集合函数 skimage.io.ImageCollection(load_pattern,load_func=None) 这个函数是放在io模块内的,带两个参数,第一个参数load_pattern, 表示图片组的路径,可以是一个str字符串.第二个参数load_func是一个回调函数,我

  • python数字图像处理之图像自动阈值分割示例

    目录 引言 1.threshold_otsu 2.threshold_yen 3.threshold_li 4.threshold_isodata 5.threshold_adaptive 引言 图像阈值分割是一种广泛应用的分割技术,利用图像中要提取的目标区域与其背景在灰度特性上的差异,把图像看作具有不同灰度级的两类区域(目标区域和背景区域)的组合,选取一个比较合理的阈值,以确定图像中每个像素点应该属于目标区域还是背景区域,从而产生相应的二值图像. 在skimage库中,阈值分割的功能是放在fi

随机推荐