Python图像运算之图像掩膜直方图和HS直方图详解

目录
  • 一.图像掩膜直方图
  • 二.图像HS直方图
  • 三.直方图判断白天黑夜
  • 四.总结

一.图像掩膜直方图

如果要统计图像的某一部分直方图,就需要使用掩码(蒙板)来进行计算。假设将要统计的部分设置为白色,其余部分设置为黑色,然后使用该掩膜进行直方图绘制,其完整代码如下所示。

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib

#读取图像
img = cv2.imread('luo.png')

#转换为RGB图像
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

#设置掩膜
mask = np.zeros(img.shape[:2], np.uint8)
mask[100:300, 100:300] = 255
masked_img = cv2.bitwise_and(img, img, mask=mask)

#图像直方图计算
hist_full = cv2.calcHist([img], [0], None, [256], [0,256]) #通道[0]-灰度图

#图像直方图计算(含掩膜)
hist_mask = cv2.calcHist([img], [0], mask, [256], [0,256])

plt.figure(figsize=(8, 6))

#设置字体
matplotlib.rcParams['font.sans-serif']=['SimHei']

#原始图像
plt.subplot(221)
plt.imshow(img_rgb, 'gray')
plt.axis('off')
plt.title("(a)原始图像")

#绘制掩膜
plt.subplot(222)
plt.imshow(mask, 'gray')
plt.axis('off')
plt.title("(b)掩膜")

#绘制掩膜设置后的图像
plt.subplot(223)
plt.imshow(masked_img, 'gray')
plt.axis('off')
plt.title("(c)图像掩膜处理")

#绘制直方图
plt.subplot(224)
plt.plot(hist_full)
plt.plot(hist_mask)
plt.title("(d)直方图曲线")
plt.xlabel("x")
plt.ylabel("y")
plt.show()

其运行结果如图1所示,它使用了一个200×200像素的掩膜进行实验。其中图1(a)表示原始图像,图1(b)表示200×200像素的掩膜,图1©表示原始图像进行掩膜处理,图1(d)表示直方图曲线,蓝色曲线为原始图像的灰度值直方图分布情况,绿色波动更小的曲线为掩膜直方图曲线。

二.图像HS直方图

为了刻画图像中颜色的直观特性,常常需要分析图像的HSV空间下的直方图特性。HSV空间是由色调(Hue)、饱和度(Saturation)、以及亮度(Value)构成,因此在进行直方图计算时,需要先将源RGB图像转化为HSV颜色空间图像,然后将对应的H和S通道进行单元划分,再其二维空间上计算相对应直方图,再计算直方图空间上的最大值并归一化绘制相应的直方图信息,从而形成色调-饱和度直方图(或H-S直方图)。该直方图通常应用在目标检测、特征分析以及目标特征跟踪等场景[1-2]。

由于H和S分量与人感受颜色的方式是紧密相连,V分量与图像的彩色信息无关,这些特点使得HSV模型非常适合于借助人的视觉系统来感知彩色特性的图像处理算法。

下面的代码是具体的实现代码,使用matplotlib.pyplot库中的imshow()函数来绘制具有不同颜色映射的2D直方图。

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt

#读取图像
img = cv2.imread('luo.png')

#转换为RGB图像
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

#图像HSV转换
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)

#计算H-S直方图
hist = cv2.calcHist(hsv, [0,1], None, [180,256], [0,180,0,256])

#原始图像
plt.figure(figsize=(8, 6))
plt.subplot(121), plt.imshow(img_rgb, 'gray'), plt.title("(a)"), plt.axis('off')

#绘制H-S直方图
plt.subplot(122), plt.imshow(hist, interpolation='nearest'), plt.title("(b)")
plt.xlabel("x"), plt.ylabel("y")
plt.show()

图2(a)表示原始输入图像,图2(b)是原图像对应的彩色直方图,其中X轴表示饱和度(S),Y轴表示色调(H)。在直方图中,可以看到H=140和S=130附近的一些高值,它对应于艳丽的色调。

三.直方图判断白天黑夜

接着讲述一个应用直方图的案例,通过直方图来判断一幅图像是黑夜或白天。常见的方法是通过计算图像的灰度平均值、灰度中值或灰度标准差,再与自定义的阈值进行对比,从而判断是黑夜还是白天[3-4]。

灰度平均值:该值等于图像中所有像素灰度值之和除以图像的像素个数。

灰度中值:对图像中所有像素灰度值进行排序,然后获取所有像素最中间的值,即为灰度中值。

灰度标准差:又常称均方差,是离均差平方的算术平均数的平方根。标准差能反映一个数据集的离散程度,是总体各单位标准值与其平均数离差平方的算术平均数的平方根。如果一幅图看起来灰蒙蒙的, 那灰度标准差就小;如果一幅图看起来很鲜艳,那对比度就很大,标准差也大。

下面的代码是计算灰度“Lena”图的灰度平均值、灰度中值和灰度标准差。

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt

#函数: 获取图像的灰度平均值
def fun_mean(img, height, width):
    sum_img = 0
    for i in range(height):
        for j in range(width):
            sum_img = sum_img + int(img[i,j])
    mean = sum_img / (height * width)
    return mean

#函数: 获取中位数
def fun_median(data):
    length = len(data)
    data.sort()
    if (length % 2)== 1:
        z = length // 2
        y = data[z]
    else:
        y = (int(data[length//2]) + int(data[length//2-1])) / 2
    return y

#读取图像
img = cv2.imread('lena-hd.png')

#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]

#计算图像的灰度平均值
mean = fun_mean(grayImage, height, width)
print("灰度平均值:", mean)

#计算图像的灰度中位数
value = grayImage.ravel() #获取所有像素值
median = fun_median(value)
print("灰度中值:", median)

#计算图像的灰度标准差
std = np.std(value, ddof = 1)
print("灰度标准差", std)

其运行结果如图3所示,图3(a)为原始图像,图3(b)为处理结果。其灰度平均值为123,灰度中值为129,灰度标准差为48.39。

下面讲解另一种用来判断图像是白天还是黑夜的方法,其基本步骤如下:

(1)读取原始图像,转换为灰度图,并获取图像的所有像素值;

(2)设置灰度阈值并计算该阈值以下的像素个数。比如像素的阈值设置为50,统计低于50的像素值个数;

(3)设置比例参数,对比该参数与低于该阈值的像素占比,如果低于参数则预测为白天,高于参数则预测为黑夜。比如该参数设置为0.8,像素的灰度值低于阈值50的个数占整幅图像所有像素个数的90%,则认为该图像偏暗,故预测为黑夜;否则预测为白天。

具体实现的代码如下所示。

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt

#函数: 判断黑夜或白天
def func_judge(img):
    #获取图像高度和宽度
    height = grayImage.shape[0]
    width = grayImage.shape[1]
    piexs_sum = height * width
    dark_sum = 0  #偏暗像素个数
    dark_prop = 0 #偏暗像素所占比例

    for i in range(height):
        for j in range(width):
            if img[i, j] < 50: #阈值为50
                dark_sum += 1

    #计算比例
    print(dark_sum)
    print(piexs_sum)
    dark_prop = dark_sum * 1.0 / piexs_sum
    if dark_prop >=0.8:
        print("This picture is dark!", dark_prop)
    else:
        print("This picture is bright!", dark_prop)

#读取图像
img = cv2.imread('day.png')

#转换为RGB图像
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#计算256灰度级的图像直方图
hist = cv2.calcHist([grayImage], [0], None, [256], [0,255])

#判断黑夜或白天
func_judge(grayImage)

#显示原始图像和绘制的直方图
plt.subplot(121), plt.imshow(img_rgb, 'gray'), plt.axis('off'), plt.title("(a)")
plt.subplot(122), plt.plot(hist, color='r'), plt.xlabel("x"), plt.ylabel("y"), plt.title("(b)")

plt.show()

第一张测试图输出的结果如图4所示,其中图4(a)为原始图像,图4(b)为对应直方图曲线。

最终输出结果为“(‘This picture is bright!’, 0.010082704388303882)”,该预测为白天。

第二张测试图输出的结果如图6所示,其中图6(a)为原始图像,图6(b)为对应直方图曲线。

最终输出结果为“(‘This picture is dark!’, 0.8511824175824175)”,该预测为黑夜。

四.总结

本章主要讲解图像直方图相关知识点,包括掩膜直方图和HS直方图,并通过直方图判断黑夜与白天,通过案例分享直方图的实际应用。希望对您有所帮助,后续将进入图像增强相关知识点。

以上就是Python图像运算之图像掩膜直方图和HS直方图详解的详细内容,更多关于Python直方图的资料请关注我们其它相关文章!

(0)

相关推荐

  • 深入了解Python二维直方图

    目录 前言 一.OpenCV中的二维直方图 二.Numpy中的二维直方图 三.直方图示例 1.使用Numpy函数计算直方图 2.使用OpenCV函数计算直方图 前言 只统计像素的灰度值这一特征,可将其成为一维直方图.二维直方图可以统计像素的色相和饱和度,用于查找图像的颜色直方图. 一.OpenCV中的二维直方图 OpenCV仍然使用cv2.calcHist()函数来查找图像的颜色直方图,只是在指定参数时与之前有所区别. cv2.calcHist()函数的基本格式如下: hist =cv2.cal

  • Python图像运算之图像灰度直方图对比详解

    目录 一.灰度增强直方图对比 二.灰度减弱直方图对比 三.图像反色直方图对比 四.图像对数变换直方图对比 五.图像阈值化处理直方图对比 六.总结 一.灰度增强直方图对比 图像灰度上移变换使用的表达式为: DB=DA+50 该算法将实现图像灰度值的上移,从而提升图像的亮度,结合直方图对比的实现代码如下所示. # -*- coding: utf-8 -*- # By:Eastmount import cv2 import numpy as np import matplotlib.pyplot as

  • Python实现直方图均衡基本原理解析

    1. 基本原理 通过一个变换,将输入图像的灰度级转换为`均匀分布`,变换后的灰度级的概率密度函数为 $$P_s(s) = \frac{1}{L-1}$$ 直方图均衡的变换为 $$s = T(r) = (L-1)\int_0^r {P_r(c)} \,{\rm d}c $$ $s$为变换后的灰度级,$r$为变换前的灰度级$P_r(r)$为变换前的概率密度函数2. 测试结果 图源自skimage 3.代码 import numpy as np def hist_equalization(input_

  • python OpenCV图像直方图处理

    目录 1.图像直方图基本含义和绘制 2.OpenCV统计直方图并绘制 3.使用掩码的直方图-直方图.掩膜 4.直方图均衡化原理及函数 5.子图的绘制 6.直方图均衡化对比 1.图像直方图基本含义和绘制 首先我们先要了解一下python三大剑客之一——matplotlib我们都知道matlab作为一个工具是公认的绘图牛,但是我想说的是python下的matplotlib这个超级剑客也是非常厉害的,因为python近年来才火热起来,所以热度没有matlib高,但是matlib可以实现的功能作为pyt

  • python 对一幅灰度图像进行直方图均衡化

    from PIL import Image from pylab import * from numpy import * def histeq(im,nbr_bins = 256): """对一幅灰度图像进行直方图均衡化""" #计算图像的直方图 #在numpy中,也提供了一个计算直方图的函数histogram(),第一个返回的是直方图的统计量,第二个为每个bins的中间值 imhist,bins = histogram(im.flatten(

  • python中opencv 直方图处理

    目录 直方图处理 直方图的含义 绘制直方图 使用Numpy绘制直方图 使用OpenCV绘制直方图 使用掩模绘制直方图 直方图均衡化 直方图均衡化原理 直方图均衡化处理 pyplot 模块介绍 subplot 函数 imshow函数 直方图处理 直方图从图像内部灰度级的角度对图像进行表述从直方图的角度对图像进行处理,可以达到增强图像显示效果的目的. 直方图的含义 直方图是图像内灰度值的统计特性与图像灰度值之间的函数,直方图统计图像内各个灰度级出现的次数.从直方图的图形上观察,横坐标是图像中各像素点

  • Python图像运算之图像掩膜直方图和HS直方图详解

    目录 一.图像掩膜直方图 二.图像HS直方图 三.直方图判断白天黑夜 四.总结 一.图像掩膜直方图 如果要统计图像的某一部分直方图,就需要使用掩码(蒙板)来进行计算.假设将要统计的部分设置为白色,其余部分设置为黑色,然后使用该掩膜进行直方图绘制,其完整代码如下所示. # -*- coding: utf-8 -*- # By:Eastmount import cv2 import numpy as np import matplotlib.pyplot as plt import matplotl

  • Python图像运算之图像点运算与灰度化处理详解

    目录 一.图像点运算概念 二.图像灰度化处理 三.基于像素操作的图像灰度化处理 1.最大值灰度处理方法 2.平均灰度处理方法 3.加权平均灰度处理方法 四.总结 一.图像点运算概念 图像点运算(Point Operation)指对于一幅输入图像,将产生一幅输出图像,输出图像的每个像素点的灰度值由输入像素点决定.点运算实际上是灰度到灰度的映射过程,通过映射变换来达到增强或者减弱图像的灰度.还可以对图像进行求灰度直方图.线性变换.非线性变换以及图像骨架的提取.它与相邻的像素之间没有运算关系,是一种简

  • Python图像运算之图像灰度线性变换详解

    目录 一.灰度线性变换 二.图像灰度上移变换 三.图像对比度增强变换 四.图像对比度减弱变换 五.图像灰度反色变换 六.总结 一.灰度线性变换 图像的灰度线性变换是通过建立灰度映射来调整原始图像的灰度,从而改善图像的质量,凸显图像的细节,提高图像的对比度.灰度线性变换的计算公式如(12-1)所示: 该公式中DB表示灰度线性变换后的灰度值,DA表示变换前输入图像的灰度值,α和b为线性变换方程f(D)的参数,分别表示斜率和截距[1-4]. 当α=1,b=0时,保持原始图像 当α=1,b!=0时,图像

  • Python图像运算之图像灰度非线性变换详解

    目录 一.图像灰度非线性变换 二.图像灰度对数变换 三.图像灰度伽玛变换 四.总结 一.图像灰度非线性变换 原始图像的灰度值按照DB=DA×DA/255的公式进行非线性变换,其代码如下: # -*- coding: utf-8 -*- # By:Eastmount import cv2 import numpy as np import matplotlib.pyplot as plt #读取原始图像 img = cv2.imread('luo.png') #图像灰度转换 grayImage =

  • Python图像运算之图像阈值化处理详解

    目录 一.图像阈值化 二.固定阈值化处理 1.二进制阈值化 2.反二进制阈值化 3.截断阈值化 4.阈值化为0 5.反阈值化为0 三.自适应阈值化处理 四.总结 一.图像阈值化 图像阈值化(Binarization)旨在剔除掉图像中一些低于或高于一定值的像素,从而提取图像中的物体,将图像的背景和噪声区分开来. 灰度化处理后的图像中,每个像素都只有一个灰度值,其大小表示明暗程度.阈值化处理可以将图像中的像素划分为两类颜色,常见的阈值化算法如公式(1)所示: 当某个像素点的灰度Gray(i,j)小于

  • Python图像锐化与边缘检测之Sobel与Laplacian算子详解

    目录 一.Sobel算子 二.Laplacian算子 三.总结 一.Sobel算子 Sobel算子是一种用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导.该算子用于计算图像明暗程度近似值,根据图像边缘旁边明暗程度把该区域内超过某个数的特定点记为边缘.Sobel算子在Prewitt算子的基础上增加了权重的概念,认为相邻点的距离远近对当前像素点的影响是不同的,距离越近的像素点对应当前像素的影响越大,从而实现图像锐化并突出边缘轮廓[1-4]. Sobel算子的边缘定位更准确,常用于噪声较多.灰度

  • Python图像锐化与边缘检测之Scharr,Canny,LOG算子详解

    目录 一.Scharr算子 二.Cann算子 三.LOG算子 四.总结 一.Scharr算子 由于Sobel算子在计算相对较小的核的时候,其近似计算导数的精度比较低,比如一个3×3的Sobel算子,当梯度角度接近水平或垂直方向时,其不精确性就越发明显.Scharr算子同Sobel算子的速度一样快,但是准确率更高,尤其是计算较小核的情景,所以利用3×3滤波器实现图像边缘提取更推荐使用Scharr算子. Scharr算子又称为Scharr滤波器,也是计算x或y方向上的图像差分,在OpenCV中主要是

  • python二维码操作:对QRCode和MyQR入门详解

    python是所有编程语言中模块最丰富的 生活中常见的二维码功能在使用python第三方库来生成十分容易 三个大矩形是定位图案,用于标记二维码的大小.这三个定位图案有白边,通过这三个矩形就可以标识一个二维码了. QRCode 生成这个二维码只用一行 import qrcode qrcode.make("不睡觉干嘛呢").get_image().show() #设置URL必须添加http:// 安装导入QRCode pip install qrcode #方法多,体量小 安装导入MyQR

  • python实现图像处理之PiL依赖库的案例应用详解

    Python实现图像处理:PiL依赖库的应用 本文包含的练习题主要是PIL依赖库,即pillow相关的应用. 练习一:使用python给图片增加数字 实现思路: 使用PIL的Image.open导入图片. 获取图片的大小. 调用ImageDraw,在图片的指定位置写上数字. #coding=utf-8 #Auther by Alice #在图片的右上角增加一个数字 from PIL import Image,ImageFont,ImageDraw image = Image.open('/Use

随机推荐