Pytorch自定义CNN网络实现猫狗分类详解过程
目录
- 前言
- 一. 数据预处理
- 二. 定义网络
- 三. 训练模型
前言
数据集下载地址:
链接: https://pan.baidu.com/s/17aglKyKFvMvcug0xrOqJdQ?pwd=6i7m
Dogs vs. Cats(猫狗大战)来源Kaggle上的一个竞赛题,任务为给定一个数据集,设计一种算法中的猫狗图片进行判别。
数据集包括25000张带标签的训练集图片,猫和狗各125000张,标签都是以cat or dog命名的。图像为RGB格式jpg图片,size不一样。截图如下:
一. 数据预处理
pytorch的数据预处理部分要写成一个类,这个类继承Dataset类,并必须要实现三个函数。
from torch.utils.data import DataLoader,Dataset from torchvision import transforms as T import matplotlib.pyplot as plt import os from PIL import Image class DogCat(Dataset): def __init__(self, root, transforms=None, train=True): imgs = [os.path.join(root,img) for img in os.listdir(root)] imgs_num = len(imgs) if train: self.imgs = imgs[:int(0.7 * imgs_num)] else: self.imgs = imgs[int(0.3 * imgs_num):] if transforms is None: normalize = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.transforms = T.Compose([ T.Resize(224), T.CenterCrop(224), T.ToTensor(), normalize ]) else: self.transforms = transforms def __getitem__(self, index): img_path = self.imgs[index] # dog label : 1 cat label : 0 label = 1 if "dog" in img_path.split('/')[-1] else 0 data = Image.open(img_path) data = self.transforms(data) return data,label def __len__(self): return len(self.imgs)
__init__为构造函数,我这里用力定义数据路径,数据集划分,transforms。
__getitem__为迭代函数,用来return单个数据的data和label。
__len__返回数据集的长度。
二. 定义网络
在这个例子中,我们用一个简单的4层卷积,2层全连接,最后跟一个sigmoid输出二分类的概率的CNN网络。
import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3) self.conv2 = nn.Conv2d(32, 64, 3) self.conv3 = nn.Conv2d(64, 128, 3) self.conv4 = nn.Conv2d(128, 128, 3) self.max_pool = nn.MaxPool2d(2) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() # 12*12 for size(224,224) 7*7 for size(150,150) self.fc1 = nn.Linear(128*12*12, 512) self.fc2 = nn.Linear(512, 1) def forward(self, x): in_size = x.size(0) x = self.conv1(x) x = self.relu(x) x = self.max_pool(x) x = self.conv2(x) x = self.relu(x) x = self.max_pool(x) x = self.conv3(x) x = self.relu(x) x = self.max_pool(x) x = self.conv4(x) x = self.relu(x) x = self.max_pool(x) # 展开 x = x.view(in_size, -1) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.sigmoid(x) return x
pytorch定义网络时,必须实现两个函数,构造函数主要定义一些网络块,forward函数实现前向推理过程。且在后续代码中,如果定义对象model: ConvNet和数据image,可以直接通过model(image)来调用froward函数(python真的很神奇,C++出身的我理解这些骚操作好难)
三. 训练模型
数据准备好了,模型网络定义好了,下一步当然是训练权重了。
import torch import torch.nn as nn from torch.utils.data import DataLoader,Dataset from dataset import DogCat from network import ConvNet from draw import draw_acc,draw_loss train_data_root = "/home/elvis/workfile/dataset/dataset_kaggledogvscat/train" batch_size = 256 # 1. prepare dataset train_data = DogCat(train_data_root, train=True) val_data = DogCat(train_data_root, train=False) train_dataloader = DataLoader(train_data,batch_size=batch_size,shuffle=True) val_dataloader = DataLoader(val_data,batch_size=batch_size,shuffle=True) # 2. load model model = ConvNet() if torch.cuda.is_available(): model.cuda() # 3. prepare super parameters criterion = nn.BCELoss() learning_rate = 1e-3 # optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # 4. train train_loss_epoch = [] train_acc_epoch = [] val_loss_epoch = [] val_acc_epoch = [] for epoch in range(1, 10): model.train() train_loss = 0; train_acc = 0; for batch_idx, (data, target) in enumerate(train_dataloader): if torch.cuda.is_available(): data, target = data.cuda(), target.cuda().float().unsqueeze(-1) else: data, target = data, target.float().unsqueeze(-1) optimizer.zero_grad() output = model(data) # print(output) loss = criterion(output, target) train_loss += loss.item(); pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).cuda(); train_acc += pred.eq(target.long()).sum().item(); loss.backward() optimizer.step() if(batch_idx+1)%10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, (batch_idx+1) * len(data), len(train_dataloader.dataset), 100. * (batch_idx+1) / len(train_dataloader), loss.item())) train_loss_epoch.append(train_loss / len(train_dataloader)); train_acc_epoch.append(train_acc / len(train_dataloader.dataset)); print('\nTrain set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(train_loss / len(train_dataloader), train_acc, len(train_dataloader.dataset), 100. * train_acc / len(train_dataloader.dataset))); # val model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for batch_idx, (data, target) in enumerate(val_dataloader): if torch.cuda.is_available(): data, target = data.cuda(), target.cuda().float().unsqueeze(-1) else: data, target = data, target.float().unsqueeze(-1) output = model(data) # print(output) test_loss += criterion(output, target).item(); #每个批次平均,一个epoch里所有批次求和 pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).cuda() correct += pred.eq(target.long()).sum().item() print('Valid set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss/len(val_dataloader), correct, len(val_dataloader.dataset), 100. * correct / len(val_dataloader.dataset))); val_loss_epoch.append(test_loss / len(val_dataloader)); val_acc_epoch.append(correct / len(val_dataloader.dataset)); # Save model val_acc_rate = correct / len(val_dataloader.dataset); save = True best = "best.pt" last = "last.pt" if save: # Save last, best and delete torch.save(model.state_dict(), last) if val_acc_rate == max(val_acc_epoch): torch.save(model.state_dict(), best) print("save epoch {} model".format(epoch)) # 5. drawing draw_loss(train_loss_epoch, val_loss_epoch) draw_acc(train_acc_epoch,val_acc_epoch)
第一步,准备数据。先用我们之前定义的DogCat类来加载数据,但这个类继承自dataset,是加载一条数据的。如果要批量加载数据,还要用pytorch内部的另一个类DataLoader,然后在构造函数里传入batchsize就可以批量加载数据了。注意这里的类对象实际是一个生成器,后续通过循环就可以一直批量的去取数据了。
第二步,定义模型对象,有用显卡就把模型放在显卡上,没有的话就用cpu跑。
第三步,定义一些超参数。因为是二分类,网络最后一层为sigmoid输出类别的概率值,所以选用二分类交叉熵损失函数。再设置一下学习率和优化器。
第四步,训练n个epoch。在每一个epoch里计算训练集准去率,验证集准确率,并保存模型。
最后结果像这样
有条件的可以多训练几个epoch试试。
到此这篇关于Pytorch自定义CNN网络实现猫狗分类详解过程的文章就介绍到这了,更多相关Pytorch猫狗分类内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!