pytorch中nn.RNN()汇总

nn.RNN(input_size, hidden_size, num_layers=1, nonlinearity=tanh, bias=True, batch_first=False, dropout=0, bidirectional=False)

参数说明

  • input_size输入特征的维度, 一般rnn中输入的是词向量,那么 input_size 就等于一个词向量的维度
  • hidden_size隐藏层神经元个数,或者也叫输出的维度(因为rnn输出为各个时间步上的隐藏状态)
  • num_layers网络的层数
  • nonlinearity激活函数
  • bias是否使用偏置
  • batch_first输入数据的形式,默认是 False,就是这样形式,(seq(num_step), batch, input_dim),也就是将序列长度放在第一位,batch 放在第二位
  • dropout是否应用dropout, 默认不使用,如若使用将其设置成一个0-1的数字即可
  • birdirectional是否使用双向的 rnn,默认是 False
  • 注意某些参数的默认值在标题中已注明

输入输出shape

  • input_shape = [时间步数, 批量大小, 特征维度] = [num_steps(seq_length), batch_size, input_dim]
  • 在前向计算后会分别返回输出和隐藏状态h,其中输出指的是隐藏层在各个时间步上计算并输出的隐藏状态,它们通常作为后续输出层的输⼊。需要强调的是,该“输出”本身并不涉及输出层计算,形状为(时间步数, 批量大小, 隐藏单元个数);隐藏状态指的是隐藏层在最后时间步的隐藏状态:当隐藏层有多层时,每⼀层的隐藏状态都会记录在该变量中;对于像⻓短期记忆(LSTM),隐藏状态是⼀个元组(h, c),即hidden state和cell state(此处普通rnn只有一个值)隐藏状态h的形状为(层数, 批量大小,隐藏单元个数)

代码

rnn_layer = nn.RNN(input_size=vocab_size, hidden_size=num_hiddens, )
# 定义模型, 其中vocab_size = 1027, hidden_size = 256
num_steps = 35
batch_size = 2
state = None    # 初始隐藏层状态可以不定义
X = torch.rand(num_steps, batch_size, vocab_size)
Y, state_new = rnn_layer(X, state)
print(Y.shape, len(state_new), state_new.shape)

输出

torch.Size([35, 2, 256])     1       torch.Size([1, 2, 256])

具体计算过程
H t = i n p u t ∗ W x h + H t − 1 ∗ W h h + b i a s H_t = input * W_{xh} + H_{t-1} * W_{hh} + bias Ht​=input∗Wxh​+Ht−1​∗Whh​+bias
[batch_size, input_dim] * [input_dim, num_hiddens] + [batch_size, num_hiddens] *[num_hiddens, num_hiddens] +bias
可以发现每个隐藏状态形状都是[batch_size, num_hiddens], 起始输出也是一样的
注意:上面为了方便假设num_step=1

GRU/LSTM等参数同上面RNN

到此这篇关于pytorch中nn.RNN()总结的文章就介绍到这了,更多相关pytorch nn.RNN()内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pytorch-RNN进行回归曲线预测方式

    任务 通过输入的sin曲线与预测出对应的cos曲线 #初始加载包 和定义参数 import torch from torch import nn import numpy as np import matplotlib.pyplot as plt torch.manual_seed(1) #为了可复现 #超参数设定 TIME_SETP=10 INPUT_SIZE=1 LR=0.02 DOWNLoad_MNIST=True 定义RNN网络结构 from torch.autograd import

  • pytorch lstm gru rnn 得到每个state输出的操作

    默认只返回最后一个state,所以一次输入一个step的input # coding=UTF-8 import torch import torch.autograd as autograd # torch中自动计算梯度模块 import torch.nn as nn # 神经网络模块 torch.manual_seed(1) # lstm单元输入和输出维度都是3 lstm = nn.LSTM(input_size=3, hidden_size=3) # 生成一个长度为5,每一个元素为1*3的序

  • Pytorch实现基于CharRNN的文本分类与生成示例

    1 简介 本篇主要介绍使用pytorch实现基于CharRNN来进行文本分类与内容生成所需要的相关知识,并最终给出完整的实现代码. 2 相关API的说明 pytorch框架中每种网络模型都有构造函数,在构造函数中定义模型的静态参数,这些参数将对模型所包含weights参数的维度进行设置.在运行时,模型的实例将接收动态的tensor数据并调用forword,在得到模型输出之后便可以和真实的标签数据进行误差计算,并通过优化器进行反向传播以调整模型的参数.下面重点介绍NLP常用到的模型和相关方法. 2

  • 解决pytorch rnn 变长输入序列的问题

    pytorch实现变长输入的rnn分类 输入数据是长度不固定的序列数据,主要讲解两个部分 1.Data.DataLoader的collate_fn用法,以及按batch进行padding数据 2.pack_padded_sequence和pad_packed_sequence来处理变长序列 collate_fn Dataloader的collate_fn参数,定义数据处理和合并成batch的方式. 由于pack_padded_sequence用到的tensor必须按照长度从大到小排过序的,所以在

  • pytorch中nn.RNN()汇总

    nn.RNN(input_size, hidden_size, num_layers=1, nonlinearity=tanh, bias=True, batch_first=False, dropout=0, bidirectional=False) 参数说明 input_size输入特征的维度, 一般rnn中输入的是词向量,那么 input_size 就等于一个词向量的维度 hidden_size隐藏层神经元个数,或者也叫输出的维度(因为rnn输出为各个时间步上的隐藏状态) num_laye

  • 对Pytorch中nn.ModuleList 和 nn.Sequential详解

    简而言之就是,nn.Sequential类似于Keras中的贯序模型,它是Module的子类,在构建数个网络层之后会自动调用forward()方法,从而有网络模型生成.而nn.ModuleList仅仅类似于pytho中的list类型,只是将一系列层装入列表,并没有实现forward()方法,因此也不会有网络模型产生的副作用. 需要注意的是,nn.ModuleList接受的必须是subModule类型,例如: nn.ModuleList( [nn.ModuleList([Conv(inp_dim

  • pytorch中nn.Conv1d的用法详解

    先粘贴一段official guide:nn.conv1d官方 我一开始被in_channels.out_channels卡住了很久,结果发现就和conv2d是一毛一样的.话不多说,先粘代码(菜鸡的自我修养) class CNN1d(nn.Module): def __init__(self): super(CNN1d,self).__init__() self.layer1 = nn.Sequential( nn.Conv1d(1,100,2), nn.BatchNorm1d(100), nn

  • pytorch中nn.Flatten()函数详解及示例

    torch.nn.Flatten(start_dim=1, end_dim=- 1) 作用:将连续的维度范围展平为张量. 经常在nn.Sequential()中出现,一般写在某个神经网络模型之后,用于对神经网络模型的输出进行处理,得到tensor类型的数据. 有俩个参数,start_dim和end_dim,分别表示开始的维度和终止的维度,默认值分别是1和-1,其中1表示第一维度,-1表示最后的维度.结合起来看意思就是从第一维度到最后一个维度全部给展平为张量.(注意:数据的维度是从0开始的,也就是

  • pytorch 中nn.Dropout的使用说明

    看代码吧~ Class USeDropout(nn.Module): def __init__(self): super(DropoutFC, self).__init__() self.fc = nn.Linear(100,20) self.dropout = nn.Dropout(p=0.5) def forward(self, input): out = self.fc(input) out = self.dropout(out) return out Net = USeDropout()

  • 浅析PyTorch中nn.Module的使用

    torch.nn.Modules 相当于是对网络某种层的封装,包括网络结构以及网络参数和一些操作 torch.nn.Module 是所有神经网络单元的基类 查看源码 初始化部分: def __init__(self): self._backend = thnn_backend self._parameters = OrderedDict() self._buffers = OrderedDict() self._backward_hooks = OrderedDict() self._forwa

  • 浅析PyTorch中nn.Linear的使用

    查看源码 Linear 的初始化部分: class Linear(Module): ... __constants__ = ['bias'] def __init__(self, in_features, out_features, bias=True): super(Linear, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(to

  • 对pytorch中不定长序列补齐的操作

    第二种方法通常是在load一个batch数据时, 在collate_fn中进行补齐的. 以下给出两种思路: 第一种思路是比较容易想到的, 就是对一个batch的样本进行遍历, 然后使用np.pad对每一个样本进行补齐. for unit in data: mask = np.zeros(max_length) s_len = len(unit[0]) # calculate the length of sequence in each unit mask[: s_len] = 1 unit[0]

  • 浅谈PyTorch中in-place operation的含义

    in-place operation在pytorch中是指改变一个tensor的值的时候,不经过复制操作,而是直接在原来的内存上改变它的值.可以把它成为原地操作符. 在pytorch中经常加后缀"_"来代表原地in-place operation,比如说.add_() 或者.scatter().python里面的+=,*=也是in-place operation. 下面是正常的加操作,执行结束加操作之后x的值没有发生变化: import torch x=torch.rand(2) #t

  • PyTorch之nn.ReLU与F.ReLU的区别介绍

    我就废话不多说了,大家还是直接看代码吧~ import torch.nn as nn import torch.nn.functional as F import torch.nn as nn class AlexNet_1(nn.Module): def __init__(self, num_classes=n): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_siz

随机推荐