iOS中图片的解压缩到渲染过程详解

前言

在移动app开发过程中,图片往往是不可或缺的资源。从磁盘上加载一张图片,到显示到屏幕上,中间经过了一些复杂的过程,其中非常重要的一步就是对图片的解压缩。下面来一起看看详细的介绍吧

一.图像从文件到屏幕过程

通常计算机在显示是CPU与GPU协同合作完成一次渲染.接下来我们了解一下CPU/GPU等在这样一次渲染过程中,具体的分工是什么?

  • CPU: 计算视图frame,图片解码,需要绘制纹理图片通过数据总线交给GPU
  • GPU: 纹理混合,顶点变换与计算,像素点的填充计算,渲染到帧缓冲区。
  • 时钟信号:垂直同步信号V-Sync / 水平同步信号H-Sync。
  • iOS设备双缓冲机制:显示系统通常会引入两个帧缓冲区,双缓冲机制

图片显示到屏幕上是CPU与GPU的协作完成

对应应用来说,图片是最占用手机内存的资源,将一张图片从磁盘中加载出来,并最终显示到屏幕上,中间其实经过了一系列复杂的处理过程。

二.图片加载的工作流程

1、假设我们使用 +imageWithContentsOfFile: 方法从磁盘中加载一张图片,这个时候的图片并没有解压缩;

2、然后将生成的 UIImage 赋值给 UIImageView ;

3、接着一个隐式的 CATransaction 捕获到了 UIImageView 图层树的变化;

4、在主线程的下一个 runloop 到来时,Core Animation 提交了这个隐式的 transaction ,这个过程可能会对图片进行 copy 操作,而受图片是否字节对齐等因素的影响,这个 copy 操作可能会涉及以下部分或全部步骤:

  • 分配内存缓冲区用于管理文件 IO 和解压缩操作;
  • 将文件数据从磁盘读到内存中;
  • 将压缩的图片数据解码成未压缩的位图形式,这是一个非常耗时的 CPU 操作;
  • 最后 Core Animation 中CALayer使用未压缩的位图数据渲染 UIImageView 的图层。
  • CPU计算好图片的Frame,对图片解压之后.就会交给GPU来做图片渲染

5、渲染流程

  • GPU获取获取图片的坐标
  • 将坐标交给顶点着色器(顶点计算)
  • 将图片光栅化(获取图片对应屏幕上的像素点)
  • 片元着色器计算(计算每个像素点的最终显示的颜色值)
  • 从帧缓存区中渲染到屏幕上

我们提到了图片的解压缩是一个非常耗时的 CPU 操作,并且它默认是在主线程中执行的。那么当需要加载的图片比较多时,就会对我们应用的响应性造成严重的影响,尤其是在快速滑动的列表上,这个问题会表现得更加突出。

三.为什么要解压缩图片

既然图片的解压缩需要消耗大量的 CPU 时间,那么我们为什么还要对图片进行解压缩呢?是否可以不经过解压缩,而直接将图片显示到屏幕上呢?答案是否定的。要想弄明白这个问题,我们首先需要知道什么是位图

其实,位图就是一个像素数组,数组中的每个像素就代表着图片中的一个点。我们在应用中经常用到的 JPEG 和 PNG 图片就是位图

大家可以尝试

UIImage *image = [UIImage imageNamed:@"text.png"];
CFDataRef rawData = CGDataProviderCopyData(CGImageGetDataProvider(image.CGImage));

打印rawData,这里就是图片的原始数据.

事实上,不管是 JPEG 还是 PNG 图片,都是一种压缩的位图图形格式。只不过 PNG 图片是无损压缩,并且支持 alpha 通道,而 JPEG 图片则是有损压缩,可以指定 0-100% 的压缩比。值得一提的是,在苹果的 SDK 中专门提供了两个函数用来生成 PNG 和 JPEG 图片:

// return image as PNG. May return nil if image has no CGImageRef or invalid bitmap format
UIKIT_EXTERN NSData * __nullable UIImagePNGRepresentation(UIImage * __nonnull image);

// return image as JPEG. May return nil if image has no CGImageRef or invalid bitmap format. compression is 0(most)..1(least)
UIKIT_EXTERN NSData * __nullable UIImageJPEGRepresentation(UIImage * __nonnull image, CGFloat compressionQuality);

因此,在将磁盘中的图片渲染到屏幕之前,必须先要得到图片的原始像素数据,才能执行后续的绘制操作,这就是为什么需要对图片解压缩的原因。

四.解压缩原理

既然图片的解压缩不可避免,而我们也不想让它在主线程执行,影响我们应用的响应性,那么是否有比较好的解决方案呢?

我们前面已经提到了,当未解压缩的图片将要渲染到屏幕时,系统会在主线程对图片进行解压缩,而如果图片已经解压缩了,系统就不会再对图片进行解压缩。因此,也就有了业内的解决方案,在子线程提前对图片进行强制解压缩。

而强制解压缩的原理就是对图片进行重新绘制,得到一张新的解压缩后的位图。其中,用到的最核心的函数是 CGBitmapContextCreate :

CG_EXTERN CGContextRef __nullable CGBitmapContextCreate(void * __nullable data,
 size_t width, size_t height, size_t bitsPerComponent, size_t bytesPerRow,
 CGColorSpaceRef cg_nullable space, uint32_t bitmapInfo)
 CG_AVAILABLE_STARTING(__MAC_10_0, __IPHONE_2_0);
  • data :如果不为 NULL ,那么它应该指向一块大小至少为 bytesPerRow * height 字节的内存;如果 为 NULL ,那么系统就会为我们自动分配和释放所需的内存,所以一般指定 NULL 即可;
  • width 和height :位图的宽度和高度,分别赋值为图片的像素宽度和像素高度即可;
  • bitsPerComponent :像素的每个颜色分量使用的 bit 数,在 RGB 颜色空间下指定 8 即可;
  • bytesPerRow :位图的每一行使用的字节数,大小至少为 width * bytes per pixel 字节。当我们指定 0/NULL 时,系统不仅会为我们自动计算,而且还会进行 cache line alignment 的优化
  • space :就是我们前面提到的颜色空间,一般使用 RGB 即可;
  • bitmapInfo :位图的布局信息.kCGImageAlphaPremultipliedFirst

五.YYImage\SDWebImage开源框架实现

用于解压缩图片的函数 YYCGImageCreateDecodedCopy 存在于 YYImageCoder 类中,核心代码如下

CGImageRef YYCGImageCreateDecodedCopy(CGImageRef imageRef, BOOL decodeForDisplay) {
 ...

 if (decodeForDisplay) { // decode with redraw (may lose some precision)
  CGImageAlphaInfo alphaInfo = CGImageGetAlphaInfo(imageRef) & kCGBitmapAlphaInfoMask;

  BOOL hasAlpha = NO;
  if (alphaInfo == kCGImageAlphaPremultipliedLast ||
   alphaInfo == kCGImageAlphaPremultipliedFirst ||
   alphaInfo == kCGImageAlphaLast ||
   alphaInfo == kCGImageAlphaFirst) {
   hasAlpha = YES;
  }

  // BGRA8888 (premultiplied) or BGRX8888
  // same as UIGraphicsBeginImageContext() and -[UIView drawRect:]
  CGBitmapInfo bitmapInfo = kCGBitmapByteOrder32Host;
  bitmapInfo |= hasAlpha ? kCGImageAlphaPremultipliedFirst : kCGImageAlphaNoneSkipFirst;

  CGContextRef context = CGBitmapContextCreate(NULL, width, height, 8, 0, YYCGColorSpaceGetDeviceRGB(), bitmapInfo);
  if (!context) return NULL;

  CGContextDrawImage(context, CGRectMake(0, 0, width, height), imageRef); // decode
  CGImageRef newImage = CGBitmapContextCreateImage(context);
  CFRelease(context);

  return newImage;
 } else {
  ...
 }
}

它接受一个原始的位图参数 imageRef ,最终返回一个新的解压缩后的位图 newImage ,中间主要经过了以下三个步骤:

  • 使用 CGBitmapContextCreate 函数创建一个位图上下文;
  • 使用 CGContextDrawImage 函数将原始位图绘制到上下文中;
  • 使用 CGBitmapContextCreateImage 函数创建一张新的解压缩后的位图。

事实上,SDWebImage 中对图片的解压缩过程与上述完全一致,只是传递给 CGBitmapContextCreate 函数的部分参数存在细微的差别

性能对比:

  • 在解压PNG图片,SDWebImage>YYImage
  • 在解压JPEG图片,SDWebImage<YYImage

总结

1、图片文件只有在确认要显示时,CPU才会对齐进行解压缩.因为解压是非常消耗性能的事情.解压过的图片就不会重复解压,会缓存起来.

2、图片渲染到屏幕的过程: 读取文件->计算Frame->图片解码->解码后纹理图片位图数据通过数据总线交给GPU->GPU获取图片Frame->顶点变换计算->光栅化->根据纹理坐标获取每个像素点的颜色值(如果出现透明值需要将每个像素点的颜色*透明度值)->渲染到帧缓存区->渲染到屏幕

3、面试中如果能按照这个逻辑阐述,应该没有大的问题.不过,如果细问到离屏渲染和渲染中的细节处理.就需要掌握OpenGL ES/Metal 这个2个图形处理API. 面试过程可能会遇到不在自己技术能力范围问题,尽量知之为知之不知为不知.

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。

(0)

相关推荐

  • iOS图片压缩、滤镜、剪切及渲染等详解

    前言 本文主要给大家介绍了关于iOS图片压缩.滤镜.剪切及渲染的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧 主要内容: 1.图片基础知识的介绍 2.图片压缩 简单的回顾一下从相册获取一张图片 直接格式转换压缩:png.jpg.Context 重新绘制 3.图片处理 基于图片像素修改 图片剪切clip 渲染render 截屏 一.图片基础知识的介绍 一张图像是像素点的集合,每一个像素都是一个独立,有自己的颜色.图像一般情况下都存储成数组,可以说是二维数组.当成百上千万

  • 详解IOS开发中图片上传时两种图片压缩方式的比较

    IOS 图片上传时两种图片压缩方式的比较 上传图片不全面的想法:把图片保存到本地,然后把图片的路径上传到服务器,最后又由服务器把路径返回,这种方式不具有扩展性,如果用户换了手机,那么新手机的沙盒中就没有服务器返回的图片路径了,此时就无法获取之前已经上传了的头像了,在项目中明显的不可行. 上传图片的正确方式:上传头像到服务器一般是将图片NSData上传到服务器,服务器返回一个图片NSString地址,之后再将NSString的路径转为url并通过url请求去更新用户头像(用户头像此时更新的便是NS

  • 详解IOS图片压缩处理

    前言  1.确图片的压缩的概念: "压" 是指文件体积变小,但是像素数不变,长宽尺寸不变,那么质量可能下降. "缩" 是指文件的尺寸变小,也就是像素数减少,而长宽尺寸变小,文件体积同样会减小.  2.图片压的处理 对于"压"的功能,我们可以使用UIImageJPEGRepresentation或UIImagePNGRepresentation方法实现, 如代码: //图片压 - (void)_imageCompression{ UIImage *

  • iOS中图片的解压缩到渲染过程详解

    前言 在移动app开发过程中,图片往往是不可或缺的资源.从磁盘上加载一张图片,到显示到屏幕上,中间经过了一些复杂的过程,其中非常重要的一步就是对图片的解压缩.下面来一起看看详细的介绍吧 一.图像从文件到屏幕过程 通常计算机在显示是CPU与GPU协同合作完成一次渲染.接下来我们了解一下CPU/GPU等在这样一次渲染过程中,具体的分工是什么? CPU: 计算视图frame,图片解码,需要绘制纹理图片通过数据总线交给GPU GPU: 纹理混合,顶点变换与计算,像素点的填充计算,渲染到帧缓冲区. 时钟信

  • React中immutable的UI组件渲染性能详解

    目录 引言 UI组件渲染性能 方案一:shallow compare 方案二:直接对前后的对象进行deepCompare 总结: 引言 react 一直遵循UI = fn(state) 的原则,有时候我们的state却和UI不同步 有时候组件本身在业务上不需要渲染,却又会再一次re-render.之前在项目中遇到的一些问题,这里做一个简单的分析,大家可以一起交流一下 UI组件渲染性能 react每次触发页面的更新可大致分成两步: render(): 主要是计算v-dom的diff commit阶

  • IOS中计算缓存文件的大小判断实例详解

    IOS中计算缓存文件的大小判断实例详解 IOS中计算缓存文件的大小判断,在这里分享一下自己的心得,希望和大家一起分享技术,如果有什么不足,还请大家指正.写出这篇目的,就是希望大家一起成长,我也相信技术之间没有高低,只有互补,只有分享,才能使彼此更加成长. 实例代码: //获取缓存文件路径 -(NSString *)getCachesPath{ // 获取Caches目录路径 NSArray *paths = NSSearchPathForDirectoriesInDomains(NSCaches

  • C++中图片类型的识别与转换详解方法

    目录 1.图片类型的识别 1.1.bmp图片 1.2.jpg图片 1.3.jpg图片 1.4.gif图片 1.5.tiff图片 1.6.使用CreateFile和ReadFile API函数读取内容 2.图片之间的相互转换 1.图片类型的识别 一般情况下,不同类型的图片文件都会有其对应的后缀名,比如.jpg..bmp..jpg等.但仅仅通过后缀名,是没法判别文件是不是图片以及图片文件真实类型,必须通过文件内容的起始标记字段才能判断出来. 每种图片文件的类型标识字段存储于文件内容开始的几个字节,读

  • iOS中封装.framework及使用的方法详解

    .framework是什么? 这个问题相信做iOS的都知道答案. 在我们的日常开发中,经常会用到各种已经封装好的库,比如支付宝.微信SDK等等中的库,这些库可以给我们的开发带来很大的便利.有的时候,由于工作的需要,我们需要对自己的项目进行封装,生成库,方便别人的使用.在这里就边参考好点的博客,边总结一下我们经常看到的.framework. 那什么是"库"呢? "库"是共享程序代码的一种方式!同行总结的这句话很简单也很好的说明了它的作用! 一般的分为"静态库

  • iOS中PNChart与UITableView的联动示例详解

    前言 在开发中,特别是销售企业内部使用的APP,可能会用到数据汇总,使用到图表的功能!本文主要给大家介绍了关于iOS中PNChart与UITableView联动的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧 效果图 1.点击chart,tableView对应模块高亮 PNChart提供了一个代理方法,用来处理用户的点击事件: #pragma mark - PNChart Delegate - (void)userClickedOnPieIndexItem:(NSInt

  • vue源码之首次渲染过程详解

    目录 首次渲染 init方法内部 $mount内部 - 编译版本内部逻辑 $mount内部 - 运行时版本内部逻辑(最终执行) runtime/index中的 $mount方法 core/instance/lifecycle 中的mountComponent src/core/observer/watcher 总结 总结 首次渲染 src/core/instance/index.js 中的 this._init方法 init方法内部 $mount内部 - 编译版本内部逻辑 $mount内部 -

  • iOS中自动实现对象序列化的方法详解

    前言 在iOS 中实现对象序列化,需要遵行NSCoding协议,然后对对象的每个属性进行归档和接档赋值,响应的操作比较繁琐.本文主要介绍 利用 runtime遍历属性 大大简化代码量,下面来看看详细的介绍吧. 具体实现代码如下: 1.先建立NSobject的分类, 定义可能用到的相关类型 static NSString *intType = @"i"; // int_32t(枚举int型) static NSString *longTpye = @"l"; //lo

  • iOS中表情键盘的完整实现方法详解

    前言 最近在公司做了个表情键盘的需求,这个需求的技术难度不会很大,比较偏向业务.但是要把用户体验做的好也是不容易的,其中有几个点需要特别注意.话不多说,下面开始正文(注:本文对应的Demo放在Github上:https://github.com/VernonVan/PPStickerKeyboard (本地上传) ). 市面上的表情键盘的分析 首先来看一下市面上主要的几个APP上的表情键盘,平时使用的时候不会去关注细节,这次特意去使用了表情键盘,发现各个APP的体验还是有优有劣的. 首先是QQ和

  • iOS中多网络请求的线程安全详解

    前言 在iOS 网络编程有一种常见的场景是:我们需要并行处理二个请求并且在都成功后才能进行下一步处理.下面是部分常见的处理方式,但是在使用过程中也很容易出错: DispatchGroup:通过 GCD 机制将多个请求放到一个组内,然后通过 DispatchGroup.wait() 和 DispatchGroup.notify() 进行成功后的处理. OperationQueue:为每一个请求实例化一个 Operation 对象,然后将这些对象添加到 OperationQueue ,并且根据它们之

随机推荐