python中多个装饰器的执行顺序详解

装饰器是程序开发中经常会用到的一个功能,也是python语言开发的基础知识,如果能够在程序中合理的使用装饰器,不仅可以提高开发效率,而且可以让写的代码看上去显的高大上^_^

使用场景

可以用到装饰器的地方有很多,简单的举例如以下场景

  • 引入日志
  • 函数执行时间统计
  • 执行函数前预备处理
  • 执行函数后清理功能
  • 权限校验等场景
  • 缓存

今天讲一下python中装饰器的执行顺序,以两个装饰器为例。

装饰器代码如下:

def wrapper_out1(func):
 print('--out11--')

 def inner1(*args, **kwargs):
  print("--in11--")
  ret = func(*args, **kwargs)
  print("--in12--")
  return ret
 print("--out12--")
 return inner1

def wrapper_out2(func):
 print('--out21--')

 def inner2(*args, **kwargs):
  print("--in21--")
  ret = func(*args, **kwargs)
  print("--in22--")
  return ret
 print("--out22")
 return inner2

@wrapper_out2
@wrapper_out1
def test():
 print("--test--")
 return 1 * 2

if __name__ == '__main__':
 test()

执行结果如下:

"""
--out11--
--out12--
--out21--
--out22--
--in21--
--in11--
--test--
--in12--
--in22--
"""

执行顺序以图片形式展示如下:

先进入离test函数最近的装饰器,由于装饰器中返回的是函数的函数名引用,并非真正调用函数,所以先打印:

--out11--
--out12--
--out21--
--out22--

到inner2后,func会真正执行函数,会调用inner1(),所以再打印:

--in21--
--in11--

到inner1中,func会调用test函数,所以会打印:

--test--

再从各个函数出来后,会依次打印:

--in12--
--in22--

合起来就是上面的执行结果。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python装饰器用法实例分析

    本文实例讲述了Python装饰器用法.分享给大家供大家参考,具体如下: 无参数的装饰器 #coding=utf-8 def log(func): def wrapper(): print 'before calling ',func.__name__ func() print 'end calling ',func.__name__ return wrapper @log def hello(): print 'hello' @log def hello2(name): print 'hello

  • Python 带有参数的装饰器实例代码详解

    demo.py(装饰器,带参数的装饰器): def set_level(level_num): def set_func(func): def call_func(*args, **kwargs): if level_num == 1: print("----权限级别1,验证----") elif level_num == 2: print("----权限级别2,验证----") return func() return call_func return set_f

  • Python实现带参数的用户验证功能装饰器示例

    本文实例讲述了Python实现带参数的用户验证功能装饰器.分享给大家供大家参考,具体如下: user_list = [ {'name': 'sb1', 'passwd': '123'}, {'name': 'sb2', 'passwd': '123'}, {'name': 'sb3', 'passwd': '123'}, {'name': 'sb4', 'passwd': '123'} ] # 初始状态,用来保存登陆的用户, client_dic = {'username': None, 'lo

  • Python函数装饰器实现方法详解

    本文实例讲述了Python函数装饰器实现方法.分享给大家供大家参考,具体如下: 编写函数装饰器 这里主要介绍编写函数装饰器的相关内容. 跟踪调用 如下代码定义并应用一个函数装饰器,来统计对装饰的函数的调用次数,并且针对每一次调用打印跟踪信息. class tracer: def __init__(self,func): self.calls = 0 self.func = func def __call__(self,*args): self.calls += 1 print('call %s

  • Python装饰器基础概念与用法详解

    本文实例讲述了Python装饰器基础概念与用法.分享给大家供大家参考,具体如下: 装饰器基础 前面快速介绍了装饰器的语法,在这里,我们将深入装饰器内部工作机制,更详细更系统地介绍装饰器的内容,并学习自己编写新的装饰器的更多高级语法. 什么是装饰器 装饰是为函数和类指定管理代码的一种方式.Python装饰器以两种形式呈现: [1]函数装饰器在函数定义的时候进行名称重绑定,提供一个逻辑层来管理函数和方法或随后对它们的调用. [2]类装饰器在类定义的时候进行名称重绑定,提供一个逻辑层来管理类,或管理随

  • Python类装饰器实现方法详解

    本文实例讲述了Python类装饰器.分享给大家供大家参考,具体如下: 编写类装饰器 类装饰器类似于函数装饰器的概念,但它应用于类,它们可以用于管理类自身,或者用来拦截实例创建调用以管理实例. 单体类 由于类装饰器可以拦截实例创建调用,所以它们可以用来管理一个类的所有实例,或者扩展这些实例的接口. 下面的类装饰器实现了传统的单体编码模式,即最多只有一个类的一个实例存在. instances = {} # 全局变量,管理实例 def getInstance(aClass, *args): if aC

  • python重试装饰器的简单实现方法

    简单实现了一个在函数执行出现异常时自动重试的装饰器,支持控制最多重试次数,每次重试间隔,每次重试间隔时间递增. 最新的代码可以访问从github上获取 https://github.com/blackmatrix7/matrix-toolkit/blob/master/toolkit/retry.py #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017/8/18 上午9:50 # @Author : Matrix # @Git

  • 详解Python装饰器

    1. 定义 本质是函数,用来装饰其他函数,为其他函数添加附加功能 2. 原则 a. 不能修改被装饰函数的源代码 b. 不能修改被装饰的函数的调用方式 3. 实现装饰器知识储备 a. 函数就是变量 b. 高阶函数     i. 把一个函数当作实参传给另外一个函数,在不修改被装饰函数源代码情况下为其添加功能     ii. 返回值中包含函数名, 不修改函数的调用方式 c. 嵌套函数 高阶函数+嵌套函数==>装饰器 # Author: Lockegogo user, passwd = 'LK', '1

  • Python装饰器语法糖

    Python装饰器语法糖代码示例 ####装饰器的固定格式 ##普通版本 def timer(func): def inner(*args,**kwargs): '''执行函数之前要做的''' ret = func(*args,**kwargs) '''执行函数之后要做的''' return ret return inner ##wraps版本 from functools import wraps def deco(func): @wraps(func) #加在最内层函数正上方 def wra

  • python中多个装饰器的执行顺序详解

    装饰器是程序开发中经常会用到的一个功能,也是python语言开发的基础知识,如果能够在程序中合理的使用装饰器,不仅可以提高开发效率,而且可以让写的代码看上去显的高大上^_^ 使用场景 可以用到装饰器的地方有很多,简单的举例如以下场景 引入日志 函数执行时间统计 执行函数前预备处理 执行函数后清理功能 权限校验等场景 缓存 今天讲一下python中装饰器的执行顺序,以两个装饰器为例. 装饰器代码如下: def wrapper_out1(func): print('--out11--') def i

  • python中多个装饰器的调用顺序详解

    前言 一般情况下,在函数中可以使用一个装饰器,但是有时也会有两个或两个以上的装饰器.多个装饰器装饰的顺序是从里到外(就近原则),而调用的顺序是从外到里(就远原则). 原代码 执行结果 装饰顺序 : 就近原则 被装饰的函数,组装装饰器时,是从下往上装饰 执行顺序 : 就远原则 装饰器调用时是从上往下调用 为了更好的理解,找到这段话: 被装饰的函数是一个妹子,装饰器是衣服."办事情"的时候得依次把外套.衬衣.内衣脱掉,事情办完了还要依次把内衣.衬衣.外套穿上.距离"妹子"

  • vue中各选项及钩子函数执行顺序详解

    在vue中,实例选项和钩子函数和{{}}表达式都是不需要手动调用就可以直接执行的. vue的生命周期如下图: 在页面首次加载执行顺序有如下: beforeCreate //在实例初始化之后.创建之前执行 created //实例创建后执行 beforeMounted //在挂载开始之前调用 filters //挂载前加载过滤器 computed //计算属性 directives-bind //只调用一次,在指令第一次绑定到元素时调用 directives-inserted //被绑定元素插入父

  • vue中created、watch和computed的执行顺序详解

    目录 前言 为什么? 1.关于initComputed 2.关于initWatch 总结 前言 面试题:vue中created.watch(immediate: true)和computed的执行顺序是啥? 先看个简单的例子: // main.js import Vue from "vue"; new Vue({ el: "#app", template: `<div> <div>{{computedCount}}</div> &

  • Python 中的函数装饰器和闭包详解

    函数装饰器可以被用于增强方法的某些行为,如果想自己实现装饰器,则必须了解闭包的概念. 装饰器的基本概念 装饰器是一个可调用对象,它的参数是另一个函数,称为被装饰函数.装饰器可以修改这个函数再将其返回,也可以将其替换为另一个函数或者可调用对象. 例如:有个名为 decorate 的装饰器: @decorate def target(): print('running target()') 上述代码的写法和以下写法的效果是一样的: def target(): print('running targe

  • Python 中闭包与装饰器案例详解

    项目github地址:bitcarmanlee easy-algorithm-interview-and-practice 1.Python中一切皆对象 这恐怕是学习Python最有用的一句话.想必你已经知道Python中的list, tuple, dict等内置数据结构,当你执行: alist = [1, 2, 3] 时,你就创建了一个列表对象,并且用alist这个变量引用它: 当然你也可以自己定义一个类: class House(object): def __init__(self, are

  • python装饰器的特性原理详解

    这篇文章主要介绍了python装饰器的特性原理详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 今天发现了装饰器的另一种用法,下面就先上代码: data_list = [] def data_item(func): data_list.append(func) return func @data_item def foo(): return 1 @data_item def foo1(): return 2 @data_item def fo

  • Python Pytest装饰器@pytest.mark.parametrize详解

    Pytest中装饰器@pytest.mark.parametrize('参数名',list)可以实现测试用例参数化,类似DDT 如:@pytest.mark.parametrize('请求方式,接口地址,传参,预期结果',[('get','www.baidu.com','{"page":1}','{"code":0,"msg":"成功"})',('post','www.baidu.com','{"page"

  • 对python中的try、except、finally 执行顺序详解

    如下所示: def test1(): try: print('to do stuff') raise Exception('hehe') print('to return in try') return 'try' except Exception: print('process except') print('to return in except') return 'except' finally: print('to return in finally') return 'finally'

  • 基于python中pygame模块的Linux下安装过程(详解)

    一.使用pip安装Python包 大多数较新的Python版本都自带pip,因此首先可检查系统是否已经安装了pip.在Python3中,pip有时被称为pip3. 1.在Linux和OS X系统中检查是否安装了pip 打开一个终端窗口,并执行如下命令: Python2.7中: zhuzhu@zhuzhu-K53SJ:~$ pip --version pip 8.1.1 from /usr/lib/python2.7/dist-packages (python 2.7) Python3.X中: z

随机推荐