Springboot集成Kafka实现producer和consumer的示例代码
本文介绍如何在springboot项目中集成kafka收发message。
Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性: 通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。支持通过Kafka服务器和消费机集群来分区消息。支持Hadoop并行数据加载。
安装Kafka
因为安装kafka需要zookeeper的支持,所以Windows安装时需要将zookeeper先安装上,然后将kafka安装好就可以了。 下面我给出Mac安装的步骤以及需要注意的点吧,windows的配置除了所在位置不太一样其他几乎没什么不同。
brew install kafka
对,就是这么简单,mac上一个命令就可以搞定了,这个安装过程可能需要等一会儿,应该是和网络状况有关系。安装提示信息可能有错误消息,如"Error: Could not link: /usr/local/share/doc/homebrew" 这个没关系,自动忽略掉了。 最终我们看到下面的样子就成功咯。
==> Summary ðŸº/usr/local/Cellar/kafka/1.1.0: 157 files, 47.8MB
安装的配置文件位置如下,根据自己的需要修改端口号什么的就可以了。
安装的zoopeeper和kafka的位置 /usr/local/Cellar/
配置文件 /usr/local/etc/kafka/server.properties /usr/local/etc/kafka/zookeeper.properties
启动zookeeper
./bin/zookeeper-server-start /usr/local/etc/kafka/zookeeper.properties &
启动kafka
./bin/kafka-server-start /usr/local/etc/kafka/server.properties &
为kafka创建Topic,topic 名为test,可以配置成自己想要的名字,回头再代码中配置正确就可以了。
./bin/kafka-topics --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test
1、先解决依赖
springboot相关的依赖我们就不提了,和kafka相关的只依赖一个spring-kafka集成包
<dependency> <groupId>org.springframework.kafka</groupId> <artifactId>spring-kafka</artifactId> <version>1.1.1.RELEASE</version> </dependency>
这里我们先把配置文件展示一下
#============== kafka =================== kafka.consumer.zookeeper.connect=10.93.21.21:2181 kafka.consumer.servers=10.93.21.21:9092 kafka.consumer.enable.auto.commit=true kafka.consumer.session.timeout=6000 kafka.consumer.auto.commit.interval=100 kafka.consumer.auto.offset.reset=latest kafka.consumer.topic=test kafka.consumer.group.id=test kafka.consumer.concurrency=10 kafka.producer.servers=10.93.21.21:9092 kafka.producer.retries=0 kafka.producer.batch.size=4096 kafka.producer.linger=1 kafka.producer.buffer.memory=40960
2、Configuration:Kafka producer
1)通过@Configuration、@EnableKafka,声明Config并且打开KafkaTemplate能力。
2)通过@Value注入application.properties配置文件中的kafka配置。
3)生成bean,@Bean
package com.kangaroo.sentinel.collect.configuration; import java.util.HashMap; import java.util.Map; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.common.serialization.StringSerializer; import org.springframework.beans.factory.annotation.Value; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.kafka.annotation.EnableKafka; import org.springframework.kafka.core.DefaultKafkaProducerFactory; import org.springframework.kafka.core.KafkaTemplate; import org.springframework.kafka.core.ProducerFactory; @Configuration @EnableKafka public class KafkaProducerConfig { @Value("${kafka.producer.servers}") private String servers; @Value("${kafka.producer.retries}") private int retries; @Value("${kafka.producer.batch.size}") private int batchSize; @Value("${kafka.producer.linger}") private int linger; @Value("${kafka.producer.buffer.memory}") private int bufferMemory; public Map<String, Object> producerConfigs() { Map<String, Object> props = new HashMap<>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, servers); props.put(ProducerConfig.RETRIES_CONFIG, retries); props.put(ProducerConfig.BATCH_SIZE_CONFIG, batchSize); props.put(ProducerConfig.LINGER_MS_CONFIG, linger); props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, bufferMemory); props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class); return props; } public ProducerFactory<String, String> producerFactory() { return new DefaultKafkaProducerFactory<>(producerConfigs()); } @Bean public KafkaTemplate<String, String> kafkaTemplate() { return new KafkaTemplate<String, String>(producerFactory()); } }
实验我们的producer,写一个Controller。想topic=test,key=key,发送消息message
package com.kangaroo.sentinel.collect.controller; import com.kangaroo.sentinel.common.response.Response; import com.kangaroo.sentinel.common.response.ResultCode; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.kafka.core.KafkaTemplate; import org.springframework.web.bind.annotation.*; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServletResponse; @RestController @RequestMapping("/kafka") public class CollectController { protected final Logger logger = LoggerFactory.getLogger(this.getClass()); @Autowired private KafkaTemplate kafkaTemplate; @RequestMapping(value = "/send", method = RequestMethod.GET) public Response sendKafka(HttpServletRequest request, HttpServletResponse response) { try { String message = request.getParameter("message"); logger.info("kafka的消息={}", message); kafkaTemplate.send("test", "key", message); logger.info("发送kafka成功."); return new Response(ResultCode.SUCCESS, "发送kafka成功", null); } catch (Exception e) { logger.error("发送kafka失败", e); return new Response(ResultCode.EXCEPTION, "发送kafka失败", null); } } }
3、configuration:kafka consumer
1)通过@Configuration、@EnableKafka,声明Config并且打开KafkaTemplate能力。
2)通过@Value注入application.properties配置文件中的kafka配置。
3)生成bean,@Bean
package com.kangaroo.sentinel.collect.configuration; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.common.serialization.StringDeserializer; import org.springframework.beans.factory.annotation.Value; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.kafka.annotation.EnableKafka; import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory; import org.springframework.kafka.config.KafkaListenerContainerFactory; import org.springframework.kafka.core.ConsumerFactory; import org.springframework.kafka.core.DefaultKafkaConsumerFactory; import org.springframework.kafka.listener.ConcurrentMessageListenerContainer; import java.util.HashMap; import java.util.Map; @Configuration @EnableKafka public class KafkaConsumerConfig { @Value("${kafka.consumer.servers}") private String servers; @Value("${kafka.consumer.enable.auto.commit}") private boolean enableAutoCommit; @Value("${kafka.consumer.session.timeout}") private String sessionTimeout; @Value("${kafka.consumer.auto.commit.interval}") private String autoCommitInterval; @Value("${kafka.consumer.group.id}") private String groupId; @Value("${kafka.consumer.auto.offset.reset}") private String autoOffsetReset; @Value("${kafka.consumer.concurrency}") private int concurrency; @Bean public KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, String>> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>(); factory.setConsumerFactory(consumerFactory()); factory.setConcurrency(concurrency); factory.getContainerProperties().setPollTimeout(1500); return factory; } public ConsumerFactory<String, String> consumerFactory() { return new DefaultKafkaConsumerFactory<>(consumerConfigs()); } public Map<String, Object> consumerConfigs() { Map<String, Object> propsMap = new HashMap<>(); propsMap.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, servers); propsMap.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, enableAutoCommit); propsMap.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, autoCommitInterval); propsMap.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, sessionTimeout); propsMap.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); propsMap.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class); propsMap.put(ConsumerConfig.GROUP_ID_CONFIG, groupId); propsMap.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, autoOffsetReset); return propsMap; } @Bean public Listener listener() { return new Listener(); } }
new Listener()生成一个bean用来处理从kafka读取的数据。Listener简单的实现demo如下:只是简单的读取并打印key和message值
@KafkaListener中topics属性用于指定kafka topic名称,topic名称由消息生产者指定,也就是由kafkaTemplate在发送消息时指定。
package com.kangaroo.sentinel.collect.configuration; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.kafka.annotation.KafkaListener; public class Listener { protected final Logger logger = LoggerFactory.getLogger(this.getClass()); @KafkaListener(topics = {"test"}) public void listen(ConsumerRecord<?, ?> record) { logger.info("kafka的key: " + record.key()); logger.info("kafka的value: " + record.value().toString()); } }
tips:
1)我没有介绍如何安装配置kafka,配置kafka时最好用完全bind网络ip的方式,而不是localhost或者127.0.0.1
2)最好不要使用kafka自带的zookeeper部署kafka,可能导致访问不通。
3)理论上consumer读取kafka应该是通过zookeeper,但是这里我们用的是kafkaserver的地址,为什么没有深究。
4)定义监听消息配置时,GROUP_ID_CONFIG配置项的值用于指定消费者组的名称,如果同组中存在多个监听器对象则只有一个监听器对象能收到消息。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。