pandas值替换方法

如下所示:

import pandas as pd
from pandas import *
import numpy as np
data = Series([1,-999,2,-999,-1000,3])
print(data.replace(-999,np.nan))
print(data.replace([-999,-1000],np.nan))
print(data.replace([-999,-1000],[np.nan,0]))
print(data.replace({-999:np.nan,-1000:0}))

以上这篇pandas值替换方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python pandas 如何替换某列的一个值

    摘要:本文主要是讲解怎么样替换某一列的一个值. 应用场景: 假如我们有以下的数据集: 我们想把里面不是pre的字符串全部换成Nonpre,我们要怎么做呢? 做法很简单. df['col2']=df['col1'] df.loc[df['col1'] !=' pre','col2']=Nonpre 以上这篇python pandas 如何替换某列的一个值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 使用pandas对矢量化数据进行替换处理的方法

    使用pandas处理向量化的数据,进行数据的替换时不仅仅能够进行字符串的替换也能够处理数字. 做简单的示例如下: In [4]: data = Series(range(5)) In [5]: data Out[5]: 0 0 1 1 2 2 3 3 4 4 dtype: int64 In [6]: data.replace(3,333) Out[6]: 0 0 1 1 2 2 3 333 4 4 dtype: int64 In [7]: data Out[7]: 0 0 1 1 2 2 3 3

  • Python实现替换文件中指定内容的方法

    本文实例讲述了Python实现替换文件中指定内容的方法.分享给大家供大家参考,具体如下: 这里使用python编写的程序,实现如下功能:将文件中的指定子串 修改为 另外的子串 编写的python程序,文件名是file_replace.py,具体代码如下: #!/usr/bin/env python #_*_ coding:utf-8 _*_ import sys,os if len(sys.argv)<4 or len(sys.argv)>5: sys.exit('There needs fo

  • pandas值替换方法

    如下所示: import pandas as pd from pandas import * import numpy as np data = Series([1,-999,2,-999,-1000,3]) print(data.replace(-999,np.nan)) print(data.replace([-999,-1000],np.nan)) print(data.replace([-999,-1000],[np.nan,0])) print(data.replace({-999:n

  • Pandas中inf值替换的方法

    目录 出现inf的原因 解决办法 PS:为了方便后续处理,可以利用numpy,将这些inf值进行替换. 使用Pandas从MySQL读取数据,在处理之后再写回到数据库时报了一个错误: sqlalchemy.exc.ProgrammingError: (MySQLdb._exceptions.ProgrammingError) inf can not be used with MySQL 很明确报错说明,是因为DataFrame中存在inf数据 出现inf的原因 在数据处理过程中用到了除法,并且出

  • Pandas替换NaN值的方法实现

    目录 问题 方法 替换 NaN 值的步骤 参考 替换Pandas DataFram中的 NaN 值 问题 NaN 代表 Not A Number,是表示数据中缺失值的常用方法之一.它是一个特殊的浮点值,不能转换为 float 以外的任何其他类型.NaN 值是数据分析中的主要问题之一.为了得到理想的结果,对 NaN 进行处理是非常必要的. 方法 用零替换Pandas DataFram中的 NaN 值的方法: fillna(): 用于使用指定的方法填充 NA/NaN 值. replace(): da

  • python pandas消除空值和空格以及 Nan数据替换方法

    在人工采集数据时,经常有可能把空值和空格混在一起,一般也注意不到在本来为空的单元格里加入了空格.这就给做数据处理的人带来了麻烦,因为空值和空格都是代表的无数据,而pandas中Series的方法notnull()会把有空格的数据也纳入进来,这样就不能完整地得到我们想要的数据了,这里给出一个简单的方法处理该问题. 方法1: 既然我们认为空值和空格都代表无数据,那么可以先得到这两种情况下的布尔数组. 这里,我们的DataFrame类型的数据集为df,其中有一个变量VIN,那么取得空值和空格的布尔数组

  • 在Pandas中处理NaN值的方法

    关于NaN值 -在能够使用大型数据集训练学习算法之前,我们通常需要先清理数据, 也就是说,我们需要通过某个方法检测并更正数据中的错误. - 任何给定数据集可能会出现各种糟糕的数据,例如离群值或不正确的值,但是我们几乎始终会遇到的糟糕数据类型是缺少值. - Pandas 会为缺少的值分配 NaN 值. 创建一个具有NaN值得 Data Frame import pandas as pd # We create a list of Python dictionaries # 创建一个字典列表 ite

  • datagrid和repeader控件中替换标识值的方法

    DataGrid控件中替换标识值的使用: <asp:DataGrid ID="dgList" runat="server" Width="100%" AutoGenerateColumns="False"> <Columns> <asp:BoundColumn DataField="COP_G_NO" HeaderText="物料号/成品货号"><

  • 对pandas中iloc,loc取数据差别及按条件取值的方法详解

    Dataframe使用loc取某几行几列的数据: print(df.loc[0:4,['item_price_level','item_sales_level','item_collected_level','item_pv_level']]) 结果如下,取了index为0到4的五行四列数据. item_price_level item_sales_level item_collected_level item_pv_level 0 3 3 4 14 1 3 3 4 14 2 3 3 4 14

  • java正则替换img标签中src值的方法

    主要功能是: 替换html字符串中img标签src的值. 代码如下: package com.junlenet.common.util; import java.util.regex.Matcher; import java.util.regex.Pattern; /** * html处理工具类 * @author huweijun * @date 2016年7月13日 下午7:25:09 */ public class HtmlUtils { /** * 替换指定标签的属性和值 * @para

  • 对pandas数据判断是否为NaN值的方法详解

    实际项目中有这样的需求,将某一列的值,映射成类别型的数据,这个时候,需要我们将范围等频切分,或者等距切分. 具体的做法可以先看某一些特征的具体分布情况,然后我们选择合适的阈值进行分割. def age_map(x): if x < 26: return 0 elif x >=26 and x <= 35: return 1 elif x > 35 and x <= 45: return 2 elif pd.isnull(x): #判断是否为NaN值,== 和in 都无法判断

随机推荐