Python编程之基于概率论的分类方法:朴素贝叶斯

概率论啊概率论,差不多忘完了。

基于概率论的分类方法:朴素贝叶斯

1. 概述

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本章首先介绍贝叶斯分类算法的基础——贝叶斯定理。最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类。

2. 贝叶斯理论 & 条件概率

2.1 贝叶斯理论

我们现在有一个数据集,它由两类数据组成,数据分布如下图所示:

我们现在用 p1(x,y) 表示数据点 (x,y) 属于类别 1(图中用圆点表示的类别)的概率,用 p2(x,y) 表示数据点 (x,y) 属于类别 2(图中三角形表示的类别)的概率,那么对于一个新数据点 (x,y),可以用下面的规则来判断它的类别:

如果 p1(x,y) > p2(x,y) ,那么类别为1
如果 p2(x,y) > p1(x,y) ,那么类别为2

也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。

2.1.2 条件概率

如果你对 p(x,y|c1) 符号很熟悉,那么可以跳过本小节。

有一个装了 7 块石头的罐子,其中 3 块是白色的,4 块是黑色的。如果从罐子中随机取出一块石头,那么是白色石头的可能性是多少?由于取石头有 7 种可能,其中 3 种为白色,所以取出白色石头的概率为 3/7 。那么取到黑色石头的概率又是多少呢?很显然,是 4/7 。我们使用 P(white) 来表示取到白色石头的概率,其概率值可以通过白色石头数目除以总的石头数目来得到。

如果这 7 块石头如下图所示,放在两个桶中,那么上述概率应该如何计算?

计算 P(white) 或者 P(black) ,如果事先我们知道石头所在桶的信息是会改变结果的。这就是所谓的条件概率(conditional probablity)。假定计算的是从 B 桶取到白色石头的概率,这个概率可以记作 P(white|bucketB) ,我们称之为“在已知石头出自 B 桶的条件下,取出白色石头的概率”。很容易得到,P(white|bucketA) 值为 2/4 ,P(white|bucketB) 的值为 1/3 。

条件概率的计算公式如下:

P(white|bucketB) = P(white and bucketB) / P(bucketB)

首先,我们用 B 桶中白色石头的个数除以两个桶中总的石头数,得到 P(white and bucketB) = 1/7 .其次,由于 B 桶中有 3 块石头,而总石头数为 7 ,于是 P(bucketB) 就等于 3/7 。于是又 P(white|bucketB) = P(white and bucketB) / P(bucketB) = (1/7) / (3/7) = 1/3 。

另外一种有效计算条件概率的方法称为贝叶斯准则。贝叶斯准则告诉我们如何交换条件概率中的条件与结果,即如果已知 P(x|c),要求 P(c|x),那么可以使用下面的计算方法:

使用条件概率来分类

上面我们提到贝叶斯决策理论要求计算两个概率 p1(x, y) 和 p2(x, y):

如果 p1(x, y) > p2(x, y), 那么属于类别 1;
如果 p2(x, y) > p1(X, y), 那么属于类别 2.

这并不是贝叶斯决策理论的所有内容。使用 p1() 和 p2() 只是为了尽可能简化描述,而真正需要计算和比较的是 p(c1|x, y) 和 p(c2|x, y) .这些符号所代表的具体意义是: 给定某个由 x、y 表示的数据点,那么该数据点来自类别 c1 的概率是多少?数据点来自类别 c2 的概率又是多少?注意这些概率与概率 p(x, y|c1) 并不一样,不过可以使用贝叶斯准则来交换概率中条件与结果。具体地,应用贝叶斯准则得到:

使用上面这些定义,可以定义贝叶斯分类准则为:

如果 P(c1|x, y) > P(c2|x, y), 那么属于类别 c1;
如果 P(c2|x, y) > P(c1|x, y), 那么属于类别 c2.

在文档分类中,整个文档(如一封电子邮件)是实例,而电子邮件中的某些元素则构成特征。我们可以观察文档中出现的词,并把每个词作为一个特征,而每个词的出现或者不出现作为该特征的值,这样得到的特征数目就会跟词汇表中的词的数目一样多。

我们假设特征之间 相互独立 。所谓 独立(independence) 指的是统计意义上的独立,即一个特征或者单词出现的可能性与它和其他单词相邻没有关系,比如说,“我们”中的“我”和“们”出现的概率与这两个字相邻没有任何关系。这个假设正是朴素贝叶斯分类器中 朴素(naive) 一词的含义。朴素贝叶斯分类器中的另一个假设是,每个特征同等重要。

Note: 朴素贝叶斯分类器通常有两种实现方式: 一种基于伯努利模型实现,一种基于多项式模型实现。这里采用前一种实现方式。该实现方式中并不考虑词在文档中出现的次数,只考虑出不出现,因此在这个意义上相当于假设词是等权重的。

2.2 朴素贝叶斯场景

机器学习的一个重要应用就是文档的自动分类。

在文档分类中,整个文档(如一封电子邮件)是实例,而电子邮件中的某些元素则构成特征。我们可以观察文档中出现的词,并把每个词作为一个特征,而每个词的出现或者不出现作为该特征的值,这样得到的特征数目就会跟词汇表中的词的数目一样多。

朴素贝叶斯是上面介绍的贝叶斯分类器的一个扩展,是用于文档分类的常用算法。下面我们会进行一些朴素贝叶斯分类的实践项目。

2.3 朴素贝叶斯 原理

朴素贝叶斯 工作原理

提取所有文档中的词条并进行去重
获取文档的所有类别
计算每个类别中的文档数目
对每篇训练文档:

对每个类别:
如果词条出现在文档中-->增加该词条的计数值(for循环或者矩阵相加)
增加所有词条的计数值(此类别下词条总数)
对每个类别:

对每个词条:
将该词条的数目除以总词条数目得到的条件概率(P(词条|类别))
返回该文档属于每个类别的条件概率(P(类别|文档的所有词条))

2.4 朴素贝叶斯开发流程

收集数据: 可以使用任何方法。

准备数据: 需要数值型或者布尔型数据。

分析数据: 有大量特征时,绘制特征作用不大,此时使用直方图效果更好。

训练算法: 计算不同的独立特征的条件概率。

测试算法: 计算错误率。

使用算法: 一个常见的朴素贝叶斯应用是文档分类。可以在任意的分类场景中使用朴素贝叶斯分类器,不一定非要是文本。

2.5 朴素贝叶斯算法特点

优点: 在数据较少的情况下仍然有效,可以处理多类别问题。
缺点: 对于输入数据的准备方式较为敏感。
适用数据类型: 标称型数据。

2.6 朴素贝叶斯 项目案例

2.6.1 项目案例1

屏蔽社区留言板的侮辱性言论

2.6.1.1 项目概述

构建一个快速过滤器来屏蔽在线社区留言板上的侮辱性言论。如果某条留言使用了负面或者侮辱性的语言,那么就将该留言标识为内容不当。对此问题建立两个类别: 侮辱类和非侮辱类,使用 1 和 0 分别表示。

2.6.1.2 开发流程

收集数据: 可以使用任何方法

准备数据: 从文本中构建词向量

分析数据: 检查词条确保解析的正确性

训练算法: 从词向量计算概率

测试算法: 根据现实情况修改分类器

使用算法: 对社区留言板言论进行分类

收集数据: 可以使用任何方法

2.6.1.3 构造词表

def loadDataSet():
  """
  创建数据集
  :return: 单词列表postingList, 所属类别classVec
  """
  postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #[0,0,1,1,1......]
          ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
          ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
          ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
          ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
          ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
  classVec = [0, 1, 0, 1, 0, 1] # 1 is abusive, 0 not
  return postingList, classVec

2.6.1.4 准备数据: 从文本中构建词向量

def createVocabList(dataSet):
  """
  获取所有单词的集合
  :param dataSet: 数据集
  :return: 所有单词的集合(即不含重复元素的单词列表)
  """
  vocabSet = set([]) # create empty set
  for document in dataSet:
    # 操作符 | 用于求两个集合的并集
    vocabSet = vocabSet | set(document) # union of the two sets
  return list(vocabSet)

def setOfWords2Vec(vocabList, inputSet):
  """
  遍历查看该单词是否出现,出现该单词则将该单词置1
  :param vocabList: 所有单词集合列表
  :param inputSet: 输入数据集
  :return: 匹配列表[0,1,0,1...],其中 1与0 表示词汇表中的单词是否出现在输入的数据集中
  """
  # 创建一个和词汇表等长的向量,并将其元素都设置为0
  returnVec = [0] * len(vocabList)# [0,0......]
  # 遍历文档中的所有单词,如果出现了词汇表中的单词,则将输出的文档向量中的对应值设为1
  for word in inputSet:
    if word in vocabList:
      returnVec[vocabList.index(word)] = 1
    else:
      print "the word: %s is not in my Vocabulary!" % word
  return returnVec

2.6.1.5 分析数据: 检查词条确保解析的正确性

检查函数执行情况,检查词表,不出现重复单词,需要的话,可以对其进行排序。

>>> listOPosts, listClasses = bayes.loadDataSet()
>>> myVocabList = bayes.createVocabList(listOPosts)
>>> myVocabList
['cute', 'love', 'help', 'garbage', 'quit', 'I', 'problems', 'is', 'park',
'stop', 'flea', 'dalmation', 'licks', 'food', 'not', 'him', 'buying', 'posting', 'has', 'worthless', 'ate', 'to', 'maybe', 'please', 'dog', 'how',
'stupid', 'so', 'take', 'mr', 'steak', 'my']

检查函数有效性。例如:myVocabList 中索引为 2 的元素是什么单词?应该是是 help 。该单词在第一篇文档中出现了,现在检查一下看看它是否出现在第四篇文档中。

>>> bayes.setOfWords2Vec(myVocabList, listOPosts[0])
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1]

>>> bayes.setOfWords2Vec(myVocabList, listOPosts[3])
[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

2.6.1.6 训练算法: 从词向量计算概率

现在已经知道了一个词是否出现在一篇文档中,也知道该文档所属的类别。接下来我们重写贝叶斯准则,将之前的 x, y 替换为 w. 粗体的 w 表示这是一个向量,即它由多个值组成。在这个例子中,数值个数与词汇表中的词个数相同。

我们使用上述公式,对每个类计算该值,然后比较这两个概率值的大小。

首先可以通过类别 i (侮辱性留言或者非侮辱性留言)中的文档数除以总的文档数来计算概率 p(ci) 。接下来计算 p(w | ci) ,这里就要用到朴素贝叶斯假设。如果将 w 展开为一个个独立特征,那么就可以将上述概率写作 p(w0, w1, w2…wn | ci) 。这里假设所有词都互相独立,该假设也称作条件独立性假设(例如 A 和 B 两个人抛骰子,概率是互不影响的,也就是相互独立的,A 抛 2点的同时 B 抛 3 点的概率就是 1/6 * 1/6),它意味着可以使用 p(w0 | ci)p(w1 | ci)p(w2 | ci)…p(wn | ci) 来计算上述概率,这样就极大地简化了计算的过程。

2.6.1.7 朴素贝叶斯分类器训练函数

def _trainNB0(trainMatrix, trainCategory):
  """
  训练数据原版
  :param trainMatrix: 文件单词矩阵 [[1,0,1,1,1....],[],[]...]
  :param trainCategory: 文件对应的类别[0,1,1,0....],列表长度等于单词矩阵数,其中的1代表对应的文件是侮辱性文件,0代表不是侮辱性矩阵
  :return:
  """
  # 文件数
  numTrainDocs = len(trainMatrix)
  # 单词数
  numWords = len(trainMatrix[0])
  # 侮辱性文件的出现概率,即trainCategory中所有的1的个数,
  # 代表的就是多少个侮辱性文件,与文件的总数相除就得到了侮辱性文件的出现概率
  pAbusive = sum(trainCategory) / float(numTrainDocs)
  # 构造单词出现次数列表
  p0Num = zeros(numWords) # [0,0,0,.....]
  p1Num = zeros(numWords) # [0,0,0,.....]

  # 整个数据集单词出现总数
  p0Denom = 0.0
  p1Denom = 0.0
  for i in range(numTrainDocs):
    # 是否是侮辱性文件
    if trainCategory[i] == 1:
      # 如果是侮辱性文件,对侮辱性文件的向量进行加和
      p1Num += trainMatrix[i] #[0,1,1,....] + [0,1,1,....]->[0,2,2,...]
      # 对向量中的所有元素进行求和,也就是计算所有侮辱性文件中出现的单词总数
      p1Denom += sum(trainMatrix[i])
    else:
      p0Num += trainMatrix[i]
      p0Denom += sum(trainMatrix[i])
  # 类别1,即侮辱性文档的[P(F1|C1),P(F2|C1),P(F3|C1),P(F4|C1),P(F5|C1)....]列表
  # 即 在1类别下,每个单词出现的概率
  p1Vect = p1Num / p1Denom# [1,2,3,5]/90->[1/90,...]
  # 类别0,即正常文档的[P(F1|C0),P(F2|C0),P(F3|C0),P(F4|C0),P(F5|C0)....]列表
  # 即 在0类别下,每个单词出现的概率
  p0Vect = p0Num / p0Denom
  return p0Vect, p1Vect, pAbusive

总结

以上就是本文关于Python编程之基于概率论的分类方法:朴素贝叶斯的全部内容,希望对大家有所帮助。感兴趣的朋友可以参阅本站:Python内存管理方式和垃圾回收算法解析、python基础练习之几个简单的游戏、python使用邻接矩阵构造图代码示例等,有什么问题可以随时留言,小编会及时回复大家的。感谢朋友们对我们网站的支持!

(0)

相关推荐

  • python实现二分查找算法

    二分查找算法:简单的说,就是将一个数组先排序好,比如按照从小到大的顺序排列好,当给定一个数据,比如target,查找target在数组中的位置时,可以先找到数组中间的数array[middle]和target进行比较,当它比target小时,那么target一定是在数组的右边,反之,则target在数组的左边,比如它比target小,则下次就可以只比较[middle+1, end]的数,继续使用二分法,将它一分为二,直到找到target这个数返回或者数组全部遍历完成(target不在数组中) 优

  • Python基于分水岭算法解决走迷宫游戏示例

    本文实例讲述了Python基于分水岭算法解决走迷宫游戏.分享给大家供大家参考,具体如下: #Solving maze with morphological transformation """ usage:Solving maze with morphological transformation needed module:cv2/numpy/sys ref: 1.http://www.mazegenerator.net/ 2.http://blog.leanote.com

  • Python计算斗牛游戏概率算法实例分析

    本文实例讲述了Python计算斗牛游戏概率算法.分享给大家供大家参考,具体如下: 过年回家,都会约上亲朋好友聚聚会,会上经常会打麻将,斗地主,斗牛.在这些游戏中,斗牛是最受欢迎的,因为可以很多人一起玩,而且没有技术含量,都是看运气(专业术语是概率). 斗牛的玩法是: 1. 把牌中的JQK都拿出来 2. 每个人发5张牌 3. 如果5张牌中任意三张加在一起是10的 倍数,就是有牛.剩下两张牌的和的10的余数就是牛数. 牌的大小: 4条 > 3条 > 牛十 > 牛九 > -- >

  • Python实现破解猜数游戏算法示例

    本文实例讲述了Python实现破解猜数游戏算法.分享给大家供大家参考,具体如下: QQ群里的聊天机器人会发起猜数小游戏. 玩法如下: 1. 用户发 #猜数    到群里 2. 机器人响应: 猜数已经开始, 范围是1-10000之间的某个数 3. 你发送 #猜数[123] 到群里 4. 机器人响应: 大了或者小了, 或者恭喜你猜中了 5. 你根据刚才猜的123, 和返回, 猜一个更小或更大的数, 发送 #猜数[111] , 即返回第2步 那么最好的猜测方法肯定是找居中的数了, 由于心算耗时, 所以

  • Python算法输出1-9数组形成的结果为100的所有运算式

    问题: 编写一个在1,2,-,9(顺序不能变)数字之间插入+或-或什么都不插入,使得计算结果总是100的程序,并输出所有的可能性.例如:1 + 2 + 34–5 + 67–8 + 9 = 100. from functools import reduce operator = { 1: '+', 2: '-', 0: '' } base = ['1', '2', '3', '4', '5', '6', '7', '8', '9'] def isHundred(num): #转化为8位3进制数,得

  • python实现八大排序算法(2)

    本文接上一篇博客python实现的八大排序算法part1,将继续使用python实现八大排序算法中的剩余四个:快速排序.堆排序.归并排序.基数排序 5.快速排序 快速排序是通常被认为在同数量级(O(nlog2n))的排序方法中平均性能最好的. 算法思想: 已知一组无序数据a[1].a[2].--a[n],需将其按升序排列.首先任取数据a[x]作为基准.比较a[x]与其它数据并排序,使a[x]排在数据的第k位,并且使a[1]~a[k-1]中的每一个数据<a[x],a[k+1]~a[n]中的每一个数

  • python实现八大排序算法(1)

    排序 排序是计算机内经常进行的一种操作,其目的是将一组"无序"的记录序列调整为"有序"的记录序列.分内部排序和外部排序.若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序.反之,若参加排序的记录数量很大,整个序列的排序过程不可能完全在内存中完成,需要访问外存,则称此类排序问题为外部排序.内部排序的过程是一个逐步扩大记录的有序序列长度的过程. 看图使理解更清晰深刻: 假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序

  • python中文分词教程之前向最大正向匹配算法详解

    前言 大家都知道,英文的分词由于单词间是以空格进行分隔的,所以分词要相对的容易些,而中文就不同了,中文中一个句子的分隔就是以字为单位的了,而所谓的正向最大匹配和逆向最大匹配便是一种分词匹配的方法,这里以词典匹配说明. 最大匹配算法是自然语言处理中的中文匹配算法中最基础的算法,分为正向和逆向,原理都是一样的. 正向最大匹配算法,故名思意,从左向右扫描寻找词的最大匹配. 首先我们可以规定一个词的最大长度,每次扫描的时候寻找当前开始的这个长度的词来和字典中的词匹配,如果没有找到,就缩短长度继续寻找,直

  • Python编程之基于概率论的分类方法:朴素贝叶斯

    概率论啊概率论,差不多忘完了. 基于概率论的分类方法:朴素贝叶斯 1. 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础--贝叶斯定理.最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类. 2. 贝叶斯理论 & 条件概率 2.1 贝叶斯理论 我们现在有一个数据集,它由两类数据组成,数据分布如下图所示: 我们现在用 p1(x,y) 表示数据点 (x,y) 属于类别 1(图中用圆点表示的类别)的概率,用 p2(

  • python实现朴素贝叶斯分类器

    本文用的是sciki-learn库的iris数据集进行测试.用的模型也是最简单的,就是用贝叶斯定理P(A|B) = P(B|A)*P(A)/P(B),计算每个类别在样本中概率(代码中是pLabel变量) 以及每个类下每个特征的概率(代码中是pNum变量). 写得比较粗糙,对于某个类下没有此特征的情况采用p=1/样本数量. 有什么错误有人发现麻烦提出,谢谢. [python] view plain copy # -*- coding:utf-8 -*- from numpy import * fr

  • Python编程修改MP3文件名称的方法

    本文实例讲述了Python编程修改MP3文件名称的方法.分享给大家供大家参考,具体如下: 最近刚刚开始学习Python,顺便锻炼思维写的一个小函数,专门用来修改那些网上下载的mp3歌曲后名称不正确时候,使用该函数,使用方法 ModifyMp3FileInfo(r'E:/音乐/12345.mp3') Python代码: #!修改下载的Mp3文件名称为正确的Mp3文件 def ModifyMp3FileInfo(filename): mp3Id3V1 = { "tag":{"va

  • python实现基于朴素贝叶斯的垃圾分类算法

    一.模型方法 本工程采用的模型方法为朴素贝叶斯分类算法,它的核心算法思想基于概率论.我们称之为"朴素",是因为整个形式化过程只做最原始.最简单的假设.朴素贝叶斯是贝叶斯决策理论的一部分,所以讲述朴素贝叶斯之前有必要快速了解一下贝叶斯决策理论.假设现在我们有一个数据集,它由两类数据组成,数据分布如下图所示. 我们现在用p1(x,y)表示数据点(x,y)属于类别1(图中用圆点表示的类别)的概率,用p2(x,y)表示数据点(x,y)属于类别2(图中用三角形表示的类别)的概率,那么对于一个新数

  • python编写朴素贝叶斯用于文本分类

    朴素贝叶斯估计 朴素贝叶斯是基于贝叶斯定理与特征条件独立分布假设的分类方法.首先根据特征条件独立的假设学习输入/输出的联合概率分布,然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y. 具体的,根据训练数据集,学习先验概率的极大似然估计分布 以及条件概率为 Xl表示第l个特征,由于特征条件独立的假设,可得 条件概率的极大似然估计为 根据贝叶斯定理 则由上式可以得到条件概率P(Y=ck|X=x). 贝叶斯估计 用极大似然估计可能会出现所估计的概率为0的情况.后影响到后验概率结果

  • Python通过朴素贝叶斯和LSTM分别实现新闻文本分类

    目录 一.项目背景 二.数据处理与分析 三.基于机器学习的文本分类–朴素贝叶斯 1. 模型介绍 2. 代码结构 3. 结果分析 四.基于深度学习的文本分类–LSTM 1. 模型介绍 2. 代码结构 3. 结果分析 五.小结 一.项目背景 本项目来源于天池⼤赛,利⽤机器学习和深度学习等知识,对新闻⽂本进⾏分类.⼀共有14个分类类别:财经.彩票.房产.股票.家居.教育.科技.社会.时尚.时政.体育.星座.游戏.娱乐. 最终将测试集的预测结果上传⾄⼤赛官⽹,可查看排名.评价标准为类别f1_score的

  • 朴素贝叶斯算法的python实现方法

    本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 比如我们想判断一个邮件是不是垃圾邮件,那么我们知道的是这个邮件中的词的分布,那么我们还要知道:垃圾邮件中某些词的出现是多少,就可以利用贝叶斯定理得到. 朴素贝叶斯分类器中的一个假设是:每个特征同等重要 函数 loadDataSet() 创建数据集,这里的数据集

  • Python实现朴素贝叶斯的学习与分类过程解析

    概念简介: 朴素贝叶斯基于贝叶斯定理,它假设输入随机变量的特征值是条件独立的,故称之为"朴素".简单介绍贝叶斯定理: 乍看起来似乎是要求一个概率,还要先得到额外三个概率,有用么?其实这个简单的公式非常贴切人类推理的逻辑,即通过可以观测的数据,推测不可观测的数据.举个例子,也许你在办公室内不知道外面天气是晴天雨天,但是你观测到有同事带了雨伞,那么可以推断外面八成在下雨. 若X 是要输入的随机变量,则Y 是要输出的目标类别.对X 进行分类,即使求的使P(Y|X) 最大的Y值.若X 为n 维

  • python机器学习朴素贝叶斯算法及模型的选择和调优详解

    目录 一.概率知识基础 1.概率 2.联合概率 3.条件概率 二.朴素贝叶斯 1.朴素贝叶斯计算方式 2.拉普拉斯平滑 3.朴素贝叶斯API 三.朴素贝叶斯算法案例 1.案例概述 2.数据获取 3.数据处理 4.算法流程 5.注意事项 四.分类模型的评估 1.混淆矩阵 2.评估模型API 3.模型选择与调优 ①交叉验证 ②网格搜索 五.以knn为例的模型调优使用方法 1.对超参数进行构造 2.进行网格搜索 3.结果查看 一.概率知识基础 1.概率 概率就是某件事情发生的可能性. 2.联合概率 包

  • 朴素贝叶斯Python实例及解析

    本文实例为大家分享了Python朴素贝叶斯实例代码,供大家参考,具体内容如下 #-*- coding: utf-8 -*- #添加中文注释 from numpy import * #过滤网站的恶意留言 #样本数据 def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park'

随机推荐