MySQL百万级数据分页查询优化方案

当需要从数据库查询的表有上万条记录的时候,一次性查询所有结果会变得很慢,特别是随着数据量的增加特别明显,这时需要使用分页查询。对于数据库分页查询,也有很多种方法和优化的点。下面简单说一下我知道的一些方法。

准备工作

为了对下面列举的一些优化进行测试,下面针对已有的一张表进行说明。

表名:order_history
描述:某个业务的订单历史表
主要字段:unsigned int id,tinyint(4) int type
字段情况:该表一共37个字段,不包含text等大型数组,最大为varchar(500),id字段为索引,且为递增。
数据量:5709294
MySQL版本:5.7.16
线下找一张百万级的测试表可不容易,如果需要自己测试的话,可以写shell脚本什么的插入数据进行测试。
以下的 sql 所有语句执行的环境没有发生改变,下面是基本测试结果:

select count(*) from orders_history;

返回结果:5709294

三次查询时间分别为:

8903 ms
8323 ms
8401 ms

一般分页查询

一般的分页查询使用简单的 limit 子句就可以实现。limit 子句声明如下:

SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset

LIMIT 子句可以被用于指定 SELECT 语句返回的记录数。需注意以下几点:

第一个参数指定第一个返回记录行的偏移量
第二个参数指定返回记录行的最大数目

如果只给定一个参数:它表示返回最大的记录行数目
第二个参数为 -1 表示检索从某一个偏移量到记录集的结束所有的记录行
初始记录行的偏移量是 0(而不是 1)

下面是一个应用实例:

select * from orders_history where type=8 limit 1000,10;

该条语句将会从表 orders_history 中查询第1000条数据之后的10条数据,也就是第1001条到第10010条数据。

数据表中的记录默认使用主键(一般为id)排序,上面的结果相当于:

select * from orders_history where type=8 order by id limit 10000,10;

三次查询时间分别为:

3040 ms
3063 ms
3018 ms

针对这种查询方式,下面测试查询记录量对时间的影响:

select * from orders_history where type=8 limit 10000,1;
select * from orders_history where type=8 limit 10000,10;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 10000,1000;
select * from orders_history where type=8 limit 10000,10000;

三次查询时间如下:

查询1条记录:3072ms 3092ms 3002ms
查询10条记录:3081ms 3077ms 3032ms
查询100条记录:3118ms 3200ms 3128ms
查询1000条记录:3412ms 3468ms 3394ms
查询10000条记录:3749ms 3802ms 3696ms

另外我还做了十来次查询,从查询时间来看,基本可以确定,在查询记录量低于100时,查询时间基本没有差距,随着查询记录量越来越大,所花费的时间也会越来越多。

针对查询偏移量的测试:

select * from orders_history where type=8 limit 100,100;
select * from orders_history where type=8 limit 1000,100;
select * from orders_history where type=8 limit 10000,100;
select * from orders_history where type=8 limit 100000,100;
select * from orders_history where type=8 limit 1000000,100;

三次查询时间如下:

查询100偏移:25ms 24ms 24ms
查询1000偏移:78ms 76ms 77ms
查询10000偏移:3092ms 3212ms 3128ms
查询100000偏移:3878ms 3812ms 3798ms
查询1000000偏移:14608ms 14062ms 14700ms

随着查询偏移的增大,尤其查询偏移大于10万以后,查询时间急剧增加。

这种分页查询方式会从数据库第一条记录开始扫描,所以越往后,查询速度越慢,而且查询的数据越多,也会拖慢总查询速度。

使用子查询优化

这种方式先定位偏移位置的 id,然后往后查询,这种方式适用于 id 递增的情况。

select * from orders_history where type=8 limit 100000,1;

select id from orders_history where type=8 limit 100000,1;

select * from orders_history where type=8 and
id>=(select id from orders_history where type=8 limit 100000,1)
limit 100;

select * from orders_history where type=8 limit 100000,100;

4条语句的查询时间如下:

第1条语句:3674ms
第2条语句:1315ms
第3条语句:1327ms
第4条语句:3710ms

针对上面的查询需要注意:

比较第1条语句和第2条语句:使用 select id 代替 select * 速度增加了3倍
比较第2条语句和第3条语句:速度相差几十毫秒
比较第3条语句和第4条语句:得益于 select id 速度增加,第3条语句查询速度增加了3倍
这种方式相较于原始一般的查询方法,将会增快数倍。

使用 id 限定优化

这种方式假设数据表的id是连续递增的,则我们根据查询的页数和查询的记录数可以算出查询的id的范围,可以使用 id between and 来查询:

select * from orders_history where type=2 and id between 1000000 and 1000100 limit 100;

查询时间:15ms 12ms 9ms

这种查询方式能够极大地优化查询速度,基本能够在几十毫秒之内完成。限制是只能使用于明确知道id的情况,不过一般建立表的时候,都会添加基本的id字段,这为分页查询带来很多遍历。

还可以有另外一种写法:

select * from orders_history where id >= 1000001 limit 100;

当然还可以使用 in 的方式来进行查询,这种方式经常用在多表关联的时候进行查询,使用其他表查询的id集合,来进行查询:

select * from orders_history where id in (select order_id from trade_2 where goods = 'pen') limit 100;

这种 in 查询的方式要注意:某些 mysql 版本不支持在 in 子句中使用 limit。

使用临时表优化

这种方式已经不属于查询优化,这儿附带提一下。

对于使用 id 限定优化中的问题,需要 id 是连续递增的,但是在一些场景下,比如使用历史表的时候,或者出现过数据缺失问题时,可以考虑使用临时存储的表来记录分页的id,使用分页的id来进行 in 查询。这样能够极大的提高传统的分页查询速度,尤其是数据量上千万的时候。

关于数据表的id说明

一般情况下,在数据库中建立表的时候,强制为每一张表添加 id 递增字段,这样方便查询。

如果像是订单库等数据量非常庞大,一般会进行分库分表。这个时候不建议使用数据库的 id 作为唯一标识,而应该使用分布式的高并发唯一 id 生成器来生成,并在数据表中使用另外的字段来存储这个唯一标识。

使用先使用范围查询定位 id (或者索引),然后再使用索引进行定位数据,能够提高好几倍查询速度。即先 select id,然后再 select *;

(0)

相关推荐

  • MySQL 百万级分页优化(Mysql千万级快速分页)

    以下分享一点我的经验 一般刚开始学SQL的时候,会这样写 复制代码 代码如下: SELECT * FROM table ORDER BY id LIMIT 1000, 10; 但在数据达到百万级的时候,这样写会慢死 复制代码 代码如下: SELECT * FROM table ORDER BY id LIMIT 1000000, 10; 也许耗费几十秒 网上很多优化的方法是这样的 复制代码 代码如下: SELECT * FROM table WHERE id >= (SELECT id FROM

  • mysql limit分页优化方法分享

    同样是取10条数据 select * from yanxue8_visit limit 10000,10 和 select * from yanxue8_visit limit 0,10 就不是一个数量级别的. 网上也很多关于limit的五条优化准则,都是翻译自MySQL手册,虽然正确但不实用.今天发现一篇文章写了些关于limit优化的,很不错. 文中不是直接使用limit,而是首先获取到offset的id然后直接使用limit size来获取数据.根据他的数据,明显要好于直接使用limit.这

  • 如何优化Mysql千万级快速分页

    看例子: 数 据表 collect ( id, title ,info ,vtype) 就这4个字段,其中 title 用定长,info 用text, id 是逐渐,vtype是tinyint,vtype是索引.这是一个基本的新闻系统的简单模型.现在往里面填充数据,填充10万篇新闻. 最后collect 为 10万条记录,数据库表占用硬盘1.6G. OK ,看下面这条sql语句: select id,title from collect limit 1000,10; 很快:基本上0.01秒就OK

  • MYSQL分页limit速度太慢的优化方法

    在mysql中limit可以实现快速分页,但是如果数据到了几百万时我们的limit必须优化才能有效的合理的实现分页了,否则可能卡死你的服务器哦.    当一个表数据有几百万的数据的时候成了问题! 如 * from table limit 0,10 这个没有问题 当 limit 200000,10 的时候数据读取就很慢,可以按照一下方法解决     第一页会很快    PERCONA PERFORMANCE CONFERENCE 2009上,来自雅虎的几位工程师带来了一篇"EfficientPag

  • mysql 分页优化解析

    如果你的数据量有几十万条,用户又搜索一些很通俗的词,然后要依次读最后几页重温旧梦.mysql该很悲壮的不停操作硬盘. 所以,可以试着让mysql也存储分页,当然要程序配合.(这里只是提出一个设想,欢迎大家一起讨论) ASP的分页:在ASP系统中有Recordset对象来实现分页,但是大量数据放在内存中,而且不知道什么时候才失效(请ASP高手指点). SQL数据库分页:用存储过程+游标方式分页,具体实现原理不是很清楚,设想如果用一次查询就得到需要的结果,或者是id集,需要后续页时只要按照结果中的I

  • MySQL百万级数据分页查询优化方案

    当需要从数据库查询的表有上万条记录的时候,一次性查询所有结果会变得很慢,特别是随着数据量的增加特别明显,这时需要使用分页查询.对于数据库分页查询,也有很多种方法和优化的点.下面简单说一下我知道的一些方法. 准备工作 为了对下面列举的一些优化进行测试,下面针对已有的一张表进行说明. 表名:order_history 描述:某个业务的订单历史表 主要字段:unsigned int id,tinyint(4) int type 字段情况:该表一共37个字段,不包含text等大型数组,最大为varcha

  • MySQL百万级数据大分页查询优化的实现

    目录 一.MySQL分页起点越大查询速度越慢 二. limit大分页问题的性能优化方法 (1)利用表的覆盖索引来加速分页查询 (2)用上次分页的最大id优化 三.MySQL百万数据快速生成 3.1.创建内存表及普通表 3.2.创建函数 3.3.创建插入内存表数据的存储过程 3.4.创建内存表数据插入普通表的存储过程 3.5.运行存储过程插入数据 参考链接: 前言:在数据库开发过程中我们经常会使用分页,核心技术是使用用limit start, count分页语句进行数据的读取. 一.MySQL分页

  • MySQL百万级数据量分页查询方法及其优化建议

    数据库SQL优化是老生常谈的问题,在面对百万级数据量的分页查询,又有什么好的优化建议呢?下面将列举了一些常用的方法,供大家参考学习! 方法1: 直接使用数据库提供的SQL语句 语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N 适应场景: 适用于数据量较少的情况(元组百/千级) 原因/缺点: 全表扫描,速度会很慢 且 有的数据库结果集返回不稳定(如某次返回1,2,3,另外的一次返回2,1,3). Limit限制的是从结果集的M位置处取出N条输出,其余

  • 浅谈MySQL 亿级数据分页的优化

    背景 下班后愉快的坐在在回家的地铁上,心里想着周末的生活怎么安排. 突然电话响了起来,一看是我们的一个开发同学,顿时紧张了起来,本周的版本已经发布过了,这时候打电话一般来说是线上出问题了. 果然,沟通的情况是线上的一个查询数据的接口被疯狂的失去理智般的调用,这个操作直接导致线上的MySql集群被拖慢了. 好吧,这问题算是严重了,下了地铁匆匆赶到家,开电脑,跟同事把Pinpoint上的慢查询日志捞出来.看到一个很奇怪的查询,如下 POST domain/v1.0/module/method?ord

  • mysql千万级数据分页查询性能优化

    mysql数据量大时使用limit分页,随着页码的增大,查询效率越低下. 实验 1.直接使用用limit start, count分页语句: select * from order limit start, count 当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条), 如下: select * from order limit 10, 20 0.016秒 select * from order limit 100, 20

  • MySQL 百万级数据的4种查询优化方式

    一.limit越往后越慢的原因 当我们使用limit来对数据进行分页操作的时,会发现:查看前几页的时候,发现速度非常快,比如 limit 200,25,瞬间就出来了.但是越往后,速度就越慢,特别是百万条之后,卡到不行,那这个是什么原理呢.先看一下我们翻页翻到后面时,查询的sql是怎样的: select * from t_name where c_name1='xxx' order by c_name2 limit 2000000,25; 这种查询的慢,其实是因为limit后面的偏移量太大导致的.

  • MySQL 千万级数据量如何快速分页

    前言 后端开发中为了防止一次性加载太多数据导致内存.磁盘IO都开销过大,经常需要分页展示,这个时候就需要用到MySQL的LIMIT关键字.但你以为LIMIT分页就万事大吉了么,Too young,too simple啊,LIMIT在数据量大的时候极可能造成的一个问题就是深度分页. 案例 这里我以显示电商订单详情为背景举个例子,新建表如下: CREATE TABLE `cps_user_order_detail` ( `id` bigint(20) unsigned NOT NULL AUTO_I

  • 海量数据库的查询优化及分页算法方案

    海量数据库的查询优化及分页算法方案  原出处不详 摘自:www.21php.com 随着"金盾工程"建设的逐步深入和公安信息化的高速发展,公安计算机应用系统被广泛应用在各警种.各部门.与此同时,应用系统体系的核心.系统数据的存放地――数据库也随着实际应用而急剧膨胀,一些大规模的系统,如人口系统的数据甚至超过了1000万条,可谓海量.那么,如何实现快速地从这些超大容量的数据库中提取数据(查询).分析.统计以及提取数据后进行数据分页已成为各地系统管理员和数据库管理员亟待解决的难题. 在以下

  • Mysql Limit 分页查询优化详解

    select * from table LIMIT 5,10; #返回第6-15行数据 select * from table LIMIT 5; #返回前5行 select * from table LIMIT 0,5; #返回前5行 我们来写分页 物理分页 select * from table LIMIT (当前页-1)*每页显示条数,每页显示条数; MySQL之Limit简单优化.md 同样是取90000条后100条记录,传统方式还是改造方式? 传统方式是先取了前90001条记录,取其中最

随机推荐