tensorflow实现简单的卷积网络

使用tensorflow实现一个简单的卷积神经,使用的数据集是MNIST,本节将使用两个卷积层加一个全连接层,构建一个简单有代表性的卷积网络。

代码是按照书上的敲的,第一步就是导入数据库,设置节点的初始值,Tf.nn.conv2d是tensorflow中的2维卷积,参数x是输入,W是卷积的参数,比如【5,5,1,32】,前面两个数字代表卷积核的尺寸,第三个数字代表有几个通道,比如灰度图是1,彩色图是3.最后一个代表卷积的数量,总的实现代码如下:

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("MNSIT_data/", one_hot=True)
sess = tf.InteractiveSession() 

# In[2]:
#由于W和b在各层中均要用到,先定义乘函数。
#tf.truncated_normal:截断正态分布,即限制范围的正态分布
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial) 

# In[7]:
#bias初始化值0.1.
def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial) 

# In[12]:
#tf.nn.conv2d:二维的卷积
#conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None,data_format=None, name=None)
#filter:A 4-D tensor of shape
#   `[filter_height, filter_width, in_channels, out_channels]`
#strides:步长,都是1表示所有点都不会被遗漏。1-D 4值,表示每歌dim的移动步长。
# padding:边界的处理方式,“SAME"、"VALID”可选
def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 

#tf.nn.max_pool:最大值池化函数,即求2*2区域的最大值,保留最显著的特征。
#max_pool(value, ksize, strides, padding, data_format="NHWC", name=None)
#ksize:池化窗口的尺寸
#strides:[1,2,2,1]表示横竖方向步长为2
def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides = [1, 2, 2, 1], padding='SAME') 

x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
#tf.reshape:tensor的变形函数。
#-1:样本数量不固定
#28,28:新形状的shape
#1:颜色通道数
x_image = tf.reshape(x, [-1, 28, 28, 1]) 

#卷积层包含三部分:卷积计算、激活、池化
#[5,5,1,32]表示卷积核的尺寸为5×5, 颜色通道为1, 有32个卷积核
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) 

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) 

#经过2次2×2的池化后,图像的尺寸变为7×7,第二个卷积层有64个卷积核,生成64类特征,因此,卷积最后输出为7×7×64.
#tensor进入全连接层之前,先将64张二维图像变形为1维图像,便于计算。
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 

#对全连接层做dropot
keep_prob = tf.placeholder(tf.float32)
h_fc1_dropout = tf.nn.dropout(h_fc1, keep_prob) 

#又一个全连接后foftmax分类
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_dropout, W_fc2) + b_fc2) 

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y_conv), reduction_indices=[1]))
#AdamOptimizer:Adam优化函数
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) 

correct_prediction = tf.equal(tf.argmax(y_, 1), tf.argmax(y_conv, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 

#训练,并且每100个batch计算一次精度
tf.global_variables_initializer().run()
for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_:batch[1], keep_prob:1.0})
    print("step %d, training accuracy %g" %(i, train_accuracy))
  train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5}) 

#在测试集上测试
print("test accuracy %g"%accuracy.eval(feed_dict={x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0})) 

注意的是书上开始运行的代码是tf.global_variables_initializer().run(),但是在敲到代码中就会报错,也不知道为什么,可能是因为版本的问题吧,上网搜了一下,改为sess.run(tf.initialiaze_all_variables)即可。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Tensorflow实现AlexNet卷积神经网络及运算时间评测

    本文实例为大家分享了Tensorflow实现AlexNet卷积神经网络的具体实现代码,供大家参考,具体内容如下 之前已经介绍过了AlexNet的网络构建了,这次主要不是为了训练数据,而是为了对每个batch的前馈(Forward)和反馈(backward)的平均耗时进行计算.在设计网络的过程中,分类的结果很重要,但是运算速率也相当重要.尤其是在跟踪(Tracking)的任务中,如果使用的网络太深,那么也会导致实时性不好. from datetime import datetime import

  • Tensorflow卷积神经网络实例进阶

    在Tensorflow卷积神经网络实例这篇博客中,我们实现了一个简单的卷积神经网络,没有复杂的Trick.接下来,我们将使用CIFAR-10数据集进行训练. CIFAR-10是一个经典的数据集,包含60000张32*32的彩色图像,其中训练集50000张,测试集10000张.CIFAR-10如同其名字,一共标注为10类,每一类图片6000张. 本文实现了进阶的卷积神经网络来解决CIFAR-10分类问题,我们使用了一些新的技巧: 对weights进行了L2的正则化 对图片进行了翻转.随机剪切等数据

  • 基于MTCNN/TensorFlow实现人脸检测

    人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等.对于opencv的人脸检测方法,有点是简单,快速:存在的问题是人脸检测效果不好.正面/垂直/光线较好的人脸,该方法可以检测出来,而侧面/歪斜/光线不好的人脸,无法检测.因此,该方法不适合现场应用.对于dlib人脸检测方法 ,效果好于opencv的方法,但是检测力度也难以达到现场应用标准. MTCNN是基于深度学习的人脸检测方法,对自然环境中光线,角度和人脸表情变化更具有鲁棒性,人脸检测效果更好:同时,内存消

  • 解决Tensorflow安装成功,但在导入时报错的问题

    在Mac上按照官网教程安装成功tensor flow后,但在程序中导入时,仍然报错,包括但不限于以下两个错误.对于这种错误,原因主要在于Mac内默认的python库比较老了,即便通过pip命令安装了新的包,python也会默认导入默认位置的包.这时候需要做的就是删除,有冲突的包,对于以下两个错误,就是分别时numpy和six两个包冲突了. 可以在python命令行环境下,通过numpy.version和six.version两个命令查看当前版本,如果与预期的不一致,就可以删掉. 可以通过nump

  • tensorflow实现简单的卷积神经网络

    本文实例为大家分享了Android九宫格图片展示的具体代码,供大家参考,具体内容如下 一.知识点总结 1.  卷积神经网络出现的初衷是降低对图像的预处理,避免建立复杂的特征工程.因为卷积神经网络在训练的过程中,自己会提取特征. 2.   灵感来自于猫的视觉皮层研究,每一个视觉神经元只会处理一小块区域的视觉图像,即感知野.放到卷积神经网络里就是每一个隐含节点只与设定范围内的像素点相连(设定范围就是卷积核的尺寸),而全连接层是每个像素点与每个隐含节点相连.这种感知野也称之为局部感知. 例如,一张10

  • Tensorflow实现卷积神经网络的详细代码

    本文实例为大家分享了Tensorflow实现卷积神经网络的具体代码,供大家参考,具体内容如下 1.概述 定义: 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现.它包括卷积层(alternating convolutional layer)和池层(pooling layer). 卷积层(convolutional layer): 对输入数据应用若干过滤器,一个输入参数被

  • 完美解决安装完tensorflow后pip无法使用的问题

    Win8,ANACONDA3(64-bit),Python3.6.2.ANACONDA Prompt中不能用pip命令安装包,并且是在安装了TensorFlow后才发生的. 报错如下: F:\360Downloads>pip install --upgrade pip Exception: Traceback (most recent call last): File "E:\tools\anaconda\py3\lib\site-packages\pip\basecommand.py&q

  • Python(TensorFlow框架)实现手写数字识别系统的方法

    手写数字识别算法的设计与实现 本文使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统.这是本人的本科毕业论文课题,当然,这个也是机器学习的基本问题.本博文不会以论文的形式展现,而是以编程实战完成机器学习项目的角度去描述. 项目要求:本文主要解决的问题是手写数字识别,最终要完成一个识别系统. 设计识别率高的算法,实现快速识别的系统. 1 LeNet-5模型的介绍 本文实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示

  • tensorflow实现简单的卷积网络

    使用tensorflow实现一个简单的卷积神经,使用的数据集是MNIST,本节将使用两个卷积层加一个全连接层,构建一个简单有代表性的卷积网络. 代码是按照书上的敲的,第一步就是导入数据库,设置节点的初始值,Tf.nn.conv2d是tensorflow中的2维卷积,参数x是输入,W是卷积的参数,比如[5,5,1,32],前面两个数字代表卷积核的尺寸,第三个数字代表有几个通道,比如灰度图是1,彩色图是3.最后一个代表卷积的数量,总的实现代码如下: from tensorflow.examples.

  • TensorFlow 实战之实现卷积神经网络的实例讲解

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关性概念 1.卷积神经网络(ConvolutionNeural Network,CNN) 19世纪60年代科学家最早提出感受野(ReceptiveField).当时通过对猫视觉皮层细胞研究,科学家发现每一个视觉神经元只会处理一小块区域的视觉图像,即感受野.20世纪80年代,日本科学家提出神经认知机(Neocognitron)的概念,被视为卷积神经网络最初

  • 利用TensorFlow训练简单的二分类神经网络模型的方法

    利用TensorFlow实现<神经网络与机器学习>一书中4.7模式分类练习 具体问题是将如下图所示双月牙数据集分类. 使用到的工具: python3.5    tensorflow1.2.1   numpy   matplotlib 1.产生双月环数据集 def produceData(r,w,d,num): r1 = r-w/2 r2 = r+w/2 #上半圆 theta1 = np.random.uniform(0, np.pi ,num) X_Col1 = np.random.unifo

  • TensorFlow深度学习之卷积神经网络CNN

    一.卷积神经网络的概述 卷积神经网络(ConvolutionalNeural Network,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此

  • 基于python神经卷积网络的人脸识别

    本文实例为大家分享了基于神经卷积网络的人脸识别,供大家参考,具体内容如下 1.人脸识别整体设计方案 客_服交互流程图: 2.服务端代码展示 sk = socket.socket() # s.bind(address) 将套接字绑定到地址.在AF_INET下,以元组(host,port)的形式表示地址. sk.bind(("172.29.25.11",8007)) # 开始监听传入连接. sk.listen(True) while True: for i in range(100): #

  • 基于Tensorflow读取MNIST数据集时网络超时的解决方式

    最近在学习TensorFlow,比较烦人的是使用tensorflow.examples.tutorials.mnist.input_data读取数据 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('/temp/mnist_data/') X = mnist.test.images.reshape(-1, n_steps, n_inputs) y = mnis

  • keras训练浅层卷积网络并保存和加载模型实例

    这里我们使用keras定义简单的神经网络全连接层训练MNIST数据集和cifar10数据集: keras_mnist.py from sklearn.preprocessing import LabelBinarizer from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from keras.models import Sequential

  • 运用TensorFlow进行简单实现线性回归、梯度下降示例

    线性回归属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个线性函数,然后测试这个函数训练的好不好(即此函数是否足够拟合训练集数据),挑选出最好的函数(cost function最小)即可. 单变量线性回归: a) 因为是线性回归,所以学习到的函数为线性函数,即直线函数: b) 因为是单变量,因此只有一个x. 我们能够给出单变量线性回归的模型: 我们常称x为feature,h(x)为hypothesis. 上面介绍的方法中,我们肯定有一个疑问,怎样能够看出线性

  • 使用Keras构造简单的CNN网络实例

    1. 导入各种模块 基本形式为: import 模块名 from 某个文件 import 某个模块 2. 导入数据(以两类分类问题为例,即numClass = 2) 训练集数据data 可以看到,data是一个四维的ndarray 训练集的标签 3. 将导入的数据转化我keras可以接受的数据格式 keras要求的label格式应该为binary class matrices,所以,需要对输入的label数据进行转化,利用keras提高的to_categorical函数 label = np_u

随机推荐