Python图像的增强处理操作示例【基于ImageEnhance类】

本文实例讲述了Python图像的增强处理操作。分享给大家供大家参考,具体如下:

python中PIL模块中有一个叫做ImageEnhance的类,该类专门用于图像的增强处理,不仅可以增强(或减弱)图像的亮度、对比度、色度,还可以用于增强图像的锐度。

具体见下面的例子:

#-*- coding: UTF-8 -*-
from PIL import Image
from PIL import ImageEnhance
#原始图像
image = Image.open('lena.jpg')
image.show()
#亮度增强
enh_bri = ImageEnhance.Brightness(image)
brightness = 1.5
image_brightened = enh_bri.enhance(brightness)
image_brightened.show()
#色度增强
enh_col = ImageEnhance.Color(image)
color = 1.5
image_colored = enh_col.enhance(color)
image_colored.show()
#对比度增强
enh_con = ImageEnhance.Contrast(image)
contrast = 1.5
image_contrasted = enh_con.enhance(contrast)
image_contrasted.show()
#锐度增强
enh_sha = ImageEnhance.Sharpness(image)
sharpness = 3.0
image_sharped = enh_sha.enhance(sharpness)
image_sharped.show()

结果如下:

原始图像

亮度增强

色度增强

对比度增强

锐度增强

更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python图像灰度变换及图像数组操作

    使用python以及numpy通过直接操作图像数组完成一系列基本的图像处理 numpy简介: NumPy是一个非常有名的 Python 科学计算工具包,其中包含了大量有用的工具,比如数组对象(用来表示向量.矩阵.图像等)以及线性代数函数. 数组对象可以实现数组中重要的操作,比如矩阵乘积.转置.解方程系统.向量乘积和归一化.这为图像变形.对变化进行建模.图像分类.图像聚类等提供了基础. 在上一篇python基本图像操作中,当载入图像时,通过调用 array() 方法将图像转换成NumPy的数组对象

  • python简单图片操作:打开\显示\保存图像方法介绍

    一提到数字图像处理,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因此,我们这里使用python这个脚本语言来进行数字图像处理. 要使用python,必须先安装python,一般是2.7版本以上,不管是在windows系统,还是linux系统,安装都是非常简单的. 要使用python进行各种开发,就必须安装对应的库.这和matlab非常相似,只是matlab里面叫工具箱

  • Python Image模块基本图像处理操作小结

    本文实例讲述了Python Image模块基本图像处理操作.分享给大家供大家参考,具体如下: Python 里面最常用的图像操作库是Image library(PIL),功能上,虽然还不能跟Matlab比较,但是还是比较强大的,废话补多少,写点记录笔记. 1. 首先需要导入需要的图像库: import Image 2. 读取一张图片: im=Image.open('/home/Picture/test.jpg') 3. 显示一张图片: im.show() 4. 保存图片: im.save("sa

  • 使用Python给头像戴上圣诞帽的图像操作过程解析

    前言 随着圣诞的到来,大家纷纷@官方微信给自己的头像加上一顶圣诞帽.当然这种事情用很多P图软件都可以做到.但是作为一个学习图像处理的技术人,还是觉得我们有必要写一个程序来做这件事情.而且这完全可以作为一个练手的小项目,工作量不大,而且很有意思. 用到的工具 OpenCV(毕竟我们主要的内容就是OpenCV...) dlib(dlib的人脸检测比OpenCV更好用,而且dlib有OpenCV没有的关键点检测.) 用到的语言为Python.但是完全可以改成C++版本,时间有限,就不写了.有兴趣的小伙

  • Python用Pillow(PIL)进行简单的图像操作方法

    Python用Pillow(PIL)进行简单的图像操作方法 颜色与RGBA值 计算机通常将图像表示为RGB值,或者再加上alpha值(通透度,透明度),称为RGBA值.在Pillow中,RGBA的值表示为由4个整数组成的元组,分别是R.G.B.A.整数的范围0~255.RGB全0就可以表示黑色,全255代表黑色.可以猜测(255, 0, 0, 255)代表红色,因为R分量最大,G.B分量为0,所以呈现出来是红色.但是当alpha值为0时,无论是什么颜色,该颜色都不可见,可以理解为透明. from

  • Python OpenCV处理图像之图像像素点操作

    本文实例为大家分享了Python OpenCV图像像素点操作的具体代码,供大家参考,具体内容如下 0x01. 像素 有两种直接操作图片像素点的方法: 第一种办法就是将一张图片看成一个多维的list,例如对于一张图片im,想要操作第四行第四列的像素点就直接 im[3,3] 就可以获取到这个点的RGB值. 第二种就是使用 OpenCV 提供的 Get1D. Get2D 等函数. 推荐使用第一种办法吧,毕竟简单. 0x02. 获取行和列像素 有一下四个函数: cv.GetCol(im, 0): 返回第

  • Python给图像添加噪声具体操作

    在我们进行图像数据实验的时候往往需要给图像添加相应的噪声,那么该怎么添加呢,下面给出具体得操作方法. 1.打开Python的shell界面,界面如图所示: 2.载入skimage工具包和其他的工具包,如图所示,代码如下: from skimage import io,data import numpy as np 3.采用以下指令读取图片: img=data.coffee() 4.采用以下指令填产生噪声: rows,cols,dims=img.shape for i in range(5000)

  • Python图像滤波处理操作示例【基于ImageFilter类】

    本文实例讲述了Python图像滤波处理操作.分享给大家供大家参考,具体如下: 在图像处理中,经常需要对图像进行平滑.锐化.边界增强等滤波处理.在使用PIL图像处理库时,我们通过Image类中的成员函数filter()来调用滤波函数对图像进行滤波,而滤波函数则通过ImageFilter类来定义的. 下面先直接看一个样例: #-*- coding: UTF-8 -*- from PIL import Image from PIL import ImageFilter def image_filter

  • Python图像的增强处理操作示例【基于ImageEnhance类】

    本文实例讲述了Python图像的增强处理操作.分享给大家供大家参考,具体如下: python中PIL模块中有一个叫做ImageEnhance的类,该类专门用于图像的增强处理,不仅可以增强(或减弱)图像的亮度.对比度.色度,还可以用于增强图像的锐度. 具体见下面的例子: #-*- coding: UTF-8 -*- from PIL import Image from PIL import ImageEnhance #原始图像 image = Image.open('lena.jpg') imag

  • Python实现监控键盘鼠标操作示例【基于pyHook与pythoncom模块】

    本文实例讲述了Python实现监控键盘鼠标操作.分享给大家供大家参考,具体如下: # -*- coding: utf-8 -*- import pythoncom import pyHook import time def onMouseEvent(event): "处理鼠标事件" fobj.writelines('-' * 20 + 'MouseEvent Begin' + '-' * 20 + '\n') fobj.writelines("Current Time:%s\

  • Python画柱状统计图操作示例【基于matplotlib库】

    本文实例讲述了Python画柱状统计图操作.分享给大家供大家参考,具体如下: 一.工具:python的matplotlib.pyplot 库 二.案例: import matplotlib.pyplot as plt import numpy as np #添加图形属性 plt.xlabel('Age range') plt.ylabel('Number') plt.title('The statistics of face age dataset') a = plt.subplot(1, 1,

  • Python使用sqlalchemy模块连接数据库操作示例

    本文实例讲述了Python使用sqlalchemy模块连接数据库操作.分享给大家供大家参考,具体如下: 安装: pip install sqlalchemy # 安装数据库驱动: pip install pymysql pip install cx_oracle 举例:(在url后面加入?charset=utf8可以防止乱码) from sqlalchemy import create_engine engine=create_engine('mysql+pymysql://username:p

  • Python面向对象之类的封装操作示例

    本文实例讲述了Python面向对象之类的封装操作.分享给大家供大家参考,具体如下: 承接上一节<Python面向对象之类和实例>,学了Student类的定义及实例化,每个实例都拥有各自的name和score.现在若需要打印一个学生的成绩,可定义函数 print_score() 该函数为类外的函数,如下: class Student(object): def __init__(self, name, score): self.name = name self.score = score May

  • Python对象属性自动更新操作示例

    本文实例讲述了Python对象属性自动更新操作.分享给大家供大家参考,具体如下: 在软件设计中会遇到这样的问题:有些属性之间有相互关联.这样,其中的一个属性变化的时候其他的属性也应该跟随变化. 先看一段示例代码: # -*- coding:utf-8 -*- #!python3 class DemoClss: def __init__(self,val1,val2): self.val1= val1 self.val2= val2 self.sum= self.val1 + self.val2

  • Python实现的概率分布运算操作示例

    本文实例讲述了Python实现的概率分布运算操作.分享给大家供大家参考,具体如下: 1. 二项分布(离散) import numpy as np from scipy import stats import matplotlib.pyplot as plt ''' # 二项分布 (binomial distribution) # 前提:独立重复试验.有放回.只有两个结果 # 二项分布指出,随机一次试验出现事件A的概率如果为p,那么在重复n次试验中出现k次事件A的概率为: # f(n,k,p) =

  • Python列表list排列组合操作示例

    本文实例讲述了Python列表list排列组合操作.分享给大家供大家参考,具体如下: 排列 例如: 输入为 ['1','2','3']和3 输出为 ['111','112','113','121','122','123','131','132','133','211','212','213','221','222','223','231','232','233','311','312','313','321','322','323','331','332','333'] 实现代码: # -*-

  • Python实现的字典排序操作示例【按键名key与键值value排序】

    本文实例讲述了Python实现的字典排序操作.分享给大家供大家参考,具体如下: 对字典进行排序?这其实是一个伪命题,搞清楚python字典的定义---字典本身默认以key的字符顺序输出显示---就像我们用的真实的字典一样,按照abcd字母的顺序排列,并且本质上各自没有先后关系,是一个哈希表的结构: 但实际应用中我们确实有这种排序的"需求"-----按照values的值"排序"输出,或者按照别的奇怪的顺序进行输出,我们只需要把字典转化成list或者tuple,把字典每

  • python sqlite的Row对象操作示例

    本文实例讲述了python sqlite的Row对象操作.分享给大家供大家参考,具体如下: 一 代码 import sqlite3 conn=sqlite3.connect("test.db") c=conn.cursor() c.execute("DROP TABLE stocks") c.execute('''CREATE TABLE stocks(data text,trans text,symbol text,qty real,price real) '''

随机推荐