Python实现的三层BP神经网络算法示例

本文实例讲述了Python实现的三层BP神经网络算法。分享给大家供大家参考,具体如下:

这是一个非常漂亮的三层反向传播神经网络的python实现,下一步我准备试着将其修改为多层BP神经网络。

下面是运行演示函数的截图,你会发现预测的结果很惊人!

提示:运行演示函数的时候,可以尝试改变隐藏层的节点数,看节点数增加了,预测的精度会否提升

import math
import random
import string
random.seed(0)
# 生成区间[a, b)内的随机数
def rand(a, b):
 return (b-a)*random.random() + a
# 生成大小 I*J 的矩阵,默认零矩阵 (当然,亦可用 NumPy 提速)
def makeMatrix(I, J, fill=0.0):
 m = []
 for i in range(I):
  m.append([fill]*J)
 return m
# 函数 sigmoid,这里采用 tanh,因为看起来要比标准的 1/(1+e^-x) 漂亮些
def sigmoid(x):
 return math.tanh(x)
# 函数 sigmoid 的派生函数, 为了得到输出 (即:y)
def dsigmoid(y):
 return 1.0 - y**2
class NN:
 ''' 三层反向传播神经网络 '''
 def __init__(self, ni, nh, no):
  # 输入层、隐藏层、输出层的节点(数)
  self.ni = ni + 1 # 增加一个偏差节点
  self.nh = nh
  self.no = no
  # 激活神经网络的所有节点(向量)
  self.ai = [1.0]*self.ni
  self.ah = [1.0]*self.nh
  self.ao = [1.0]*self.no
  # 建立权重(矩阵)
  self.wi = makeMatrix(self.ni, self.nh)
  self.wo = makeMatrix(self.nh, self.no)
  # 设为随机值
  for i in range(self.ni):
   for j in range(self.nh):
    self.wi[i][j] = rand(-0.2, 0.2)
  for j in range(self.nh):
   for k in range(self.no):
    self.wo[j][k] = rand(-2.0, 2.0)
  # 最后建立动量因子(矩阵)
  self.ci = makeMatrix(self.ni, self.nh)
  self.co = makeMatrix(self.nh, self.no)
 def update(self, inputs):
  if len(inputs) != self.ni-1:
   raise ValueError('与输入层节点数不符!')
  # 激活输入层
  for i in range(self.ni-1):
   #self.ai[i] = sigmoid(inputs[i])
   self.ai[i] = inputs[i]
  # 激活隐藏层
  for j in range(self.nh):
   sum = 0.0
   for i in range(self.ni):
    sum = sum + self.ai[i] * self.wi[i][j]
   self.ah[j] = sigmoid(sum)
  # 激活输出层
  for k in range(self.no):
   sum = 0.0
   for j in range(self.nh):
    sum = sum + self.ah[j] * self.wo[j][k]
   self.ao[k] = sigmoid(sum)
  return self.ao[:]
 def backPropagate(self, targets, N, M):
  ''' 反向传播 '''
  if len(targets) != self.no:
   raise ValueError('与输出层节点数不符!')
  # 计算输出层的误差
  output_deltas = [0.0] * self.no
  for k in range(self.no):
   error = targets[k]-self.ao[k]
   output_deltas[k] = dsigmoid(self.ao[k]) * error
  # 计算隐藏层的误差
  hidden_deltas = [0.0] * self.nh
  for j in range(self.nh):
   error = 0.0
   for k in range(self.no):
    error = error + output_deltas[k]*self.wo[j][k]
   hidden_deltas[j] = dsigmoid(self.ah[j]) * error
  # 更新输出层权重
  for j in range(self.nh):
   for k in range(self.no):
    change = output_deltas[k]*self.ah[j]
    self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
    self.co[j][k] = change
    #print(N*change, M*self.co[j][k])
  # 更新输入层权重
  for i in range(self.ni):
   for j in range(self.nh):
    change = hidden_deltas[j]*self.ai[i]
    self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
    self.ci[i][j] = change
  # 计算误差
  error = 0.0
  for k in range(len(targets)):
   error = error + 0.5*(targets[k]-self.ao[k])**2
  return error
 def test(self, patterns):
  for p in patterns:
   print(p[0], '->', self.update(p[0]))
 def weights(self):
  print('输入层权重:')
  for i in range(self.ni):
   print(self.wi[i])
  print()
  print('输出层权重:')
  for j in range(self.nh):
   print(self.wo[j])
 def train(self, patterns, iterations=1000, N=0.5, M=0.1):
  # N: 学习速率(learning rate)
  # M: 动量因子(momentum factor)
  for i in range(iterations):
   error = 0.0
   for p in patterns:
    inputs = p[0]
    targets = p[1]
    self.update(inputs)
    error = error + self.backPropagate(targets, N, M)
   if i % 100 == 0:
    print('误差 %-.5f' % error)
def demo():
 # 一个演示:教神经网络学习逻辑异或(XOR)------------可以换成你自己的数据试试
 pat = [
  [[0,0], [0]],
  [[0,1], [1]],
  [[1,0], [1]],
  [[1,1], [0]]
 ]
 # 创建一个神经网络:输入层有两个节点、隐藏层有两个节点、输出层有一个节点
 n = NN(2, 2, 1)
 # 用一些模式训练它
 n.train(pat)
 # 测试训练的成果(不要吃惊哦)
 n.test(pat)
 # 看看训练好的权重(当然可以考虑把训练好的权重持久化)
 #n.weights()
if __name__ == '__main__':
 demo()

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

您可能感兴趣的文章:

  • Python实现的人工神经网络算法示例【基于反向传播算法】
  • Python编程实现的简单神经网络算法示例
  • python实现神经网络感知器算法
  • Python实现的递归神经网络简单示例
  • Python基于numpy灵活定义神经网络结构的方法
  • python机器学习之神经网络(一)
  • 神经网络理论基础及Python实现详解
  • Python与人工神经网络:使用神经网络识别手写图像介绍
  • Python实现感知器模型、两层神经网络
  • python机器学习之神经网络(三)
  • python机器学习之神经网络(二)
  • Python实现的径向基(RBF)神经网络示例
(0)

相关推荐

  • python机器学习之神经网络(一)

    python有专门的神经网络库,但为了加深印象,我自己在numpy库的基础上,自己编写了一个简单的神经网络程序,是基于Rosenblatt感知器的,这个感知器建立在一个线性神经元之上,神经元模型的求和节点计算作用于突触输入的线性组合,同时结合外部作用的偏置,对若干个突触的输入求和后进行调节.为了便于观察,这里的数据采用二维数据. 目标函数是训练结果的误差的平方和,由于目标函数是一个二次函数,只存在一个全局极小值,所以采用梯度下降法的策略寻找目标函数的最小值. 代码如下: import numpy

  • Python基于numpy灵活定义神经网络结构的方法

    本文实例讲述了Python基于numpy灵活定义神经网络结构的方法.分享给大家供大家参考,具体如下: 用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能! 一.用法 1). 定义一个三层神经网络: '''示例一''' nn = NeuralNetworks([3,4,2]) # 定义神经网络 nn.fit(X,y) # 拟合 print(nn.predict(X)) #预测 说明: 输入层节点数目:3 隐藏层节点数目:4 输出层节点数目:2 2).定义一个五层神经网络:

  • python实现神经网络感知器算法

    现在我们用python代码实现感知器算法. # -*- coding: utf-8 -*- import numpy as np class Perceptron(object): """ eta:学习率 n_iter:权重向量的训练次数 w_:神经分叉权重向量 errors_:用于记录神经元判断出错次数 """ def __init__(self, eta=0.01, n_iter=2): self.eta = eta self.n_iter

  • python机器学习之神经网络(二)

    由于Rosenblatt感知器的局限性,对于非线性分类的效果不理想.为了对线性分类无法区分的数据进行分类,需要构建多层感知器结构对数据进行分类,多层感知器结构如下: 该网络由输入层,隐藏层,和输出层构成,能表示种类繁多的非线性曲面,每一个隐藏层都有一个激活函数,将该单元的输入数据与权值相乘后得到的值(即诱导局部域)经过激活函数,激活函数的输出值作为该单元的输出,激活函数类似与硬限幅函数,但硬限幅函数在阈值处是不可导的,而激活函数处处可导.本次程序中使用的激活函数是tanh函数,公式如下: tan

  • python机器学习之神经网络(三)

    前面两篇文章都是参考书本神经网络的原理,一步步写的代码,这篇博文里主要学习了如何使用neurolab库中的函数来实现神经网络的算法. 首先介绍一下neurolab库的配置: 选择你所需要的版本进行下载,下载完成后解压. neurolab需要采用python安装第三方软件包的方式进行安装,这里介绍一种安装方式: (1)进入cmd窗口 (2)进入解压文件所在目录下 (3)输入 setup.py install 这样,在python安装目录的Python27\Lib\site-packages下,就可

  • Python实现的径向基(RBF)神经网络示例

    本文实例讲述了Python实现的径向基(RBF)神经网络.分享给大家供大家参考,具体如下: from numpy import array, append, vstack, transpose, reshape, \ dot, true_divide, mean, exp, sqrt, log, \ loadtxt, savetxt, zeros, frombuffer from numpy.linalg import norm, lstsq from multiprocessing impor

  • Python实现感知器模型、两层神经网络

    本文实例为大家分享了Python实现感知器模型.两层神经网络,供大家参考,具体内容如下 python 3.4 因为使用了 numpy 这里我们首先实现一个感知器模型来实现下面的对应关系 [[0,0,1], --- 0 [0,1,1], --- 1 [1,0,1], --- 0 [1,1,1]] --- 1 从上面的数据可以看出:输入是三通道,输出是单通道. 这里的激活函数我们使用 sigmoid 函数 f(x)=1/(1+exp(-x)) 其导数推导如下所示: L0=W*X; z=f(L0);

  • Python实现的人工神经网络算法示例【基于反向传播算法】

    本文实例讲述了Python实现的人工神经网络算法.分享给大家供大家参考,具体如下: 注意:本程序使用Python3编写,额外需要安装numpy工具包用于矩阵运算,未测试python2是否可以运行. 本程序实现了<机器学习>书中所述的反向传播算法训练人工神经网络,理论部分请参考我的读书笔记. 在本程序中,目标函数是由一个输入x和两个输出y组成, x是在范围[-3.14, 3.14]之间随机生成的实数,而两个y值分别对应 y1 = sin(x),y2 = 1. 随机生成一万份训练样例,经过网络的学

  • Python编程实现的简单神经网络算法示例

    本文实例讲述了Python编程实现的简单神经网络算法.分享给大家供大家参考,具体如下: python实现二层神经网络 包括输入层和输出层 # -*- coding:utf-8 -*- #! python2 import numpy as np #sigmoid function def nonlin(x, deriv = False): if(deriv == True): return x*(1-x) return 1/(1+np.exp(-x)) #input dataset x = np.

  • Python与人工神经网络:使用神经网络识别手写图像介绍

    人体的视觉系统是一个相当神奇的存在,对于下面的一串手写图像,可以毫不费力的识别出他们是504192,轻松到让人都忘记了其实这是一个复杂的工作. 实际上在我们的大脑的左脑和右脑的皮层都有一个第一视觉区域,叫做V1,里面有14亿视觉神经元.而且,在我们识别上面的图像的时候,工作的不止有V1,还有V2.V3.V4.V5,所以这么一看,我们确实威武. 但是让计算机进行模式识别,就比较复杂了,主要困难在于我们如何给计算机描述一个数字9在图像上应该是怎样的,比如我们跟计算机说,9的上面是一个圈,下右边是1竖

  • 神经网络理论基础及Python实现详解

    一.多层前向神经网络 多层前向神经网络由三部分组成:输出层.隐藏层.输出层,每层由单元组成: 输入层由训练集的实例特征向量传入,经过连接结点的权重传入下一层,前一层的输出是下一层的输入:隐藏层的个数是任意的,输入层只有一层,输出层也只有一层: 除去输入层之外,隐藏层和输出层的层数和为n,则该神经网络称为n层神经网络,如下图为2层的神经网络: 一层中加权求和,根据非线性方程进行转化输出:理论上,如果有足够多的隐藏层和足够大的训练集,可以模拟出任何方程: 二.设计神经网络结构 使用神经网络之前,必须

  • Python实现的递归神经网络简单示例

    本文实例讲述了Python实现的递归神经网络.分享给大家供大家参考,具体如下: # Recurrent Neural Networks import copy, numpy as np np.random.seed(0) # compute sigmoid nonlinearity def sigmoid(x): output = 1/(1+np.exp(-x)) return output # convert output of sigmoid function to its derivati

随机推荐