Hibernate批量处理海量数据的方法

本文实例讲述了Hibernate批量处理海量数据的方法。分享给大家供大家参考,具体如下:

Hibernate批量处理海量其实从性能上考虑,它是很不可取的,浪费了很大的内存。从它的机制上讲,Hibernate它是先把符合条件的数据查出来,放到内存当中,然后再进行操作。实际使用下来性能非常不理想,在笔者的实际使用中采用下面的第三种优化方案的数据是:100000条数据插入数据库, 需要约30分钟,呵呵,晕倒。(本人10分钟插入1000000条数据(字段比较小))

总结下来有三种来处理以解决性能问题:

1:绕过Hibernate API ,直接通过 JDBC API 来做,这个方法性能上是比较好的。也是最快的。

2:运用存储过程。

3:还是用Hibernate API 来进行常规的批量处理,可以也有变,变就变在,我们可以在查找出一定的量的时候,及时的将这些数据做完操作就 删掉,session.flush();session.evict(XX对象集); 这样也可以挽救一点性能损失。这个"一定的量"要就要根据实际情况做定量参考了。一般为30-60左右,但效果仍然不理想。

1:绕过Hibernate API ,直接通过 JDBC API 来做,这个方法性能上是比较好的,也是最快的。(实例为 更新操作)

Transaction tx=session.beginTransaction(); //注意用的是hibernate事务处理边界
Connection conn=session.connection();
PreparedStatement stmt=conn.preparedStatement("update CUSTOMER as C set C.sarlary=c.sarlary+1 where c.sarlary>1000");
stmt.excuteUpdate();
tx.commit(); //注意用的是hibernate事务处理边界

这小程序中,采用的是直接调用JDBC 的API 来访问数据库,效率很高。避免了Hibernate 先查询出来加载到内存,再进行操作引发的性能问题

2:运用存储过程。但这种方式考虑到易植和程序部署的方便性,不建议使用。(实例为 更新操作)

如果底层数据库(如Oracle)支持存储过程,也可以通过存储过程来执行批量更新。存储过程直接在数据库中运行,速度更加快。在Oracle数据库中可以定义一个名为batchUpdateCustomer()的存储过程,代码如下:

代码如下:

create or replace procedure batchUpdateCustomer(p_age in number) as begin update CUSTOMERS set AGE=AGE+1 where AGE>p_age;end;

以上存储过程有一个参数p_age,代表客户的年龄,应用程序可按照以下方式调用存储过程:

tx = session.beginTransaction();
Connection con=session.connection();
String procedure = "{call batchUpdateCustomer(?) }";
CallableStatement cstmt = con.prepareCall(procedure);
cstmt.setInt(1,0); //把年龄参数设为0
cstmt.executeUpdate();
tx.commit();

从上面程序看出,应用程序也必须绕过Hibernate API,直接通过JDBC API来调用存储过程。

3:还是用Hibernate API 来进行常规的批量处理,可以也有变,变就变在,我们可以在查找出一定的量的时候,及时的将这些数据做完操作就删掉,session.flush();session.evict(XX对象集); 这样也可以挽救一点性能损失。这个"一定的量"要就要根据实际情况做定量参考了……
(实例为 保存操作)

业务逻辑为:我们要想数据库插入10 0000 条数据

tx=session.beginTransaction();
for(int i=0;i<100000;i++)
{
Customer custom=new Customer();
custom.setName("user"+i);
session.save(custom);
if(i%50==0) // 以每50个数据作为一个处理单元,也就是我上面说的"一定的量",这个量是要酌情考虑的
{
session.flush();
session.clear();
}
}

这样可以把系统维持在一个稳定的范围……

在项目的开发过程之中,由于项目需求,我们常常需要把大批量的数据插入到数据库。数量级有万级、十万级、百万级、甚至千万级别的。如此数量级别的数据用Hibernate做插入操作,就可能会发生异常,常见的异常是OutOfMemoryError(内存溢出异常)。

首先,我们简单来回顾一下Hibernate插入操作的机制。Hibernate要对它内部缓存进行维护,当我们执行插入操作时,就会把要操作的对象全部放到自身的内部缓存来进行管理。

谈到Hibernate的缓存,Hibernate有内部缓存与二级缓存之说。由于Hibernate对这两种缓存有着不同的管理机制,对于二级缓存,我们可以对它的大小进行相关配置,而对于内部缓存,Hibernate就采取了"放任自流"的态度了,对它的容量并没有限制。现在症结找到了,我们做海量数据插入的时候,生成这么多的对象就会被纳入内部缓存(内部缓存是在内存中做缓存的),这样你的系统内存就会一点一点的被蚕食,如果最后系统被挤"炸"了,也就在情理之中了。

我们想想如何较好的处理这个问题呢?有的开发条件又必须使用Hibernate来处理,当然有的项目比较灵活,可以去寻求其他的方法。

笔者在这里推荐两种方法:

(1):优化Hibernate,程序上采用分段插入及时清除缓存的方法。
(2):绕过Hibernate API ,直接通过 JDBC API 来做批量插入,这个方法性能上是最 好的,也是最快的。

对于上述中的方法1,其基本是思路为:优化Hibernate,在配置文件中设置hibernate.jdbc.batch_size参数,来指定每次提交SQL的数量;程序上采用分段插入及时清除缓存的方法(Session实现了异步write-behind,它允许Hibernate显式地写操作的批处理),也就是每插入一定量的数据后及时的把它们从内部缓存中清除掉,释放占用的内存。

设置hibernate.jdbc.batch_size参数,可参考如下配置。

<hibernate-configuration> <session-factory>……
<property name=" hibernate.jdbc.batch_size">50</property>……
<session-factory> <hibernate-configuration>

配置hibernate.jdbc.batch_size参数的原因就是尽量少读数据库,hibernate.jdbc.batch_size参数值越大,读数据库的次数越少,速度越快。从上面的配置可以看出,Hibernate是等到程序积累到了50个SQL之后再批量提交。

笔者也在想,hibernate.jdbc.batch_size参数值也可能不是设置得越大越好,从性能角度上讲还有待商榷。这要考虑实际情况,酌情设置,一般情形设置30、50就可以满足需求了。

程序实现方面,笔者以插入10000条数据为例子,如

Session session=HibernateUtil.currentSession();
Transatcion tx=session.beginTransaction();
for(int i=0;i<10000;i++)
{
Student st=new Student();
st.setName("feifei");
session.save(st);
if(i%50==0) //以每50个数据作为一个处理单元
{
session.flush(); //保持与数据库数据的同步
session.clear(); //清除内部缓存的全部数据,及时释放出占用的内存
}
}
tx.commit();
……

在一定的数据规模下,这种做法可以把系统内存资源维持在一个相对稳定的范围。

注意:前面提到二级缓存,笔者在这里有必要再提一下。如果启用了二级缓存,从机制上讲Hibernate为了维护二级缓存,我们在做插入、更新、删除操作时,Hibernate都会往二级缓存充入相应的数据。性能上就会有很大损失,所以笔者建议在批处理情况下禁用二级缓存。

对于方法2,采用传统的JDBC的批处理,使用JDBC API来处理。

些方法请参照java 批处理自执行SQL

看看上面的代码,是不是总觉得有不妥的地方?对,没发现么!这还是JDBC的传统编程,没有一点Hibernate味道。

可以对以上的代码修改成下面这样:

Transaction tx=session.beginTransaction(); //使用Hibernate事务处理
Connection conn=session.connection();
PrepareStatement stmt=conn.prepareStatement("insert into T_STUDENT(name) values(?)");
for(int j=0;j++;j<200){
for(int i=0;i++;j<50)
{
stmt.setString(1,"feifei");
}
}
stmt.executeUpdate();
tx.commit(); //使用 Hibernate事务处理边界
……

这样改动就很有Hibernate的味道了。笔者经过测试,采用JDBC API来做批量处理,性能上比使用Hibernate API要高将近10倍,性能上JDBC 占优这是无疑的。

批量更新与删除Hibernate2中,对于批量更新操作,Hibernate是将符合要求的数据查出来,然后再做更新操作。批量删除也是这样,先把符合条件的数据查出来,然后再做删除操作。

这样有两个大缺点:

(1):占用大量的内存。
(2):处理海量数据的时候,执行update/delete语句就是海量了,而且一条update/delete语句只能操作一个对象,这样频繁的操作数据库,性能低下应该是可想而知的了。

Hibernate3 发布后,对批量更新/删除操作引入了bulk update/delete,其原理就是通过一条HQL语句完成批量更新/删除操作,很类似JDBC的批量更新/删除操作。在性能上,比Hibernate2的批量更新/删除有很大的提升。

Transaction tx=session.beginSession();
String HQL="delete STUDENT";
Query query=session.createQuery(HQL);
int size=query.executeUpdate();
tx.commit();
……

控制台输出了也就一条删除语句Hibernate:delete from T_STUDENT,语句执行少了,性能上也与使用JDBC相差无几,是一个提升性能很好的方法。当然为了有更好的性能,笔者建议批量更新与删除操作还是使用JDBC,方法以及基本的知识点与上面的批量插入方法2基本相同,这里就不在冗述。

笔者这里再提供一个方法,就是从数据库端来考虑提升性能,在Hibernate程序端调用存储过程。存储过程在数据库端运行,速度更快。以批量更新为例,给出参考代码。

首先在数据库端建立名为batchUpdateStudent存储过程:

create or replace produre batchUpdateStudent(a in number) as
begin
update STUDENT set AGE=AGE+1 where AGE>a;
end;

调用代码如下:

Transaction tx=session.beginSession();
Connection conn=session.connection();
String pd="……{call batchUpdateStudent(?)}";
CallableStatement cstmt=conn.PrepareCall(pd);
cstmt.setInt(1,20); //把年龄这个参数设为20
tx.commit();

观察上面的代码,也是绕过Hibernate API,使用 JDBC API来调用存储过程,使用的还是Hibernate的事务边界。存储过程无疑是提高批量处理性能的一个好方法,直接运行与数据库端,某种程度上讲把批处理的压力转接给了数据库。

编后语

本文探讨了Hibernate的批处理操作,出发点都是在提高性能上考虑了,也只是提供了提升性能的一个小方面。

不管采取什么样的方法,来提升性能都要根据实际的情况来考虑,为用户提供一个满足需求的而且高效稳定的系统才是重中之中。

希望本文所述对大家Hibernate程序设计有所帮助。

(0)

相关推荐

  • jsp Hibernate批量更新和批量删除处理代码

    以下程序直接通过Hibernate API批量更新CUSTOMERS表中年龄大于零的所有记录的AGE字段: tx = session.beginTransaction();Iterator customers=session.find("from Customer c where c.age>0").iterator();while(customers.hasNext()){Customer customer=(Customer)customers.next();customer

  • Hibernate管理Session和批量操作分析

    本文详细分析了Hibernate管理Session和批量操作的用法.分享给大家供大家参考.具体分析如下: Hibernate管理Session Hibernate自身提供了三种管理Session对象的方法 ① Session对象的生命周期与本地线程绑定 ② Session对象的生命周期与JTA事务绑定 ③ Hibernate委托程序管理Session对象的生命周期 在Hibernate的配置文件中,hibernate.current_session_context_class属性用于指定Sess

  • Hibernate实现批量添加数据的方法

    本文实例讲述了Hibernate实现批量添加数据的方法.分享给大家供大家参考,具体如下: 1.Hibernate_016_BatchAddData程序目录结构: 2.lib目录下所引入的jar包: 3.MedicineDao.java源代码: package com.xqh.dao; import java.util.List; import org.hibernate.Session; import com.xqh.model.Medicine; import com.xqh.

  • 基于spring boot 1.5.4 集成 jpa+hibernate+jdbcTemplate(详解)

    1.pom添加依赖 <!-- spring data jpa,会注入tomcat jdbc pool/hibernate等 --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-jpa</artifactId> </dependency> <dependency> <

  • 解析使用jdbc,hibernate处理clob/blob字段的详解

    (1)不同数据库中对应clob,blob的类型:mysql中 : clob对应text  blob对应blobdb2/oracle中 clob对应clob blob对应blob (2)domain中对应类型:clob 对应 String   blob 对应 byte[]clob 对庆 java.sql.Clob blob 对应 java.sql.Blob (3)hibernate配置文件中对应类型:clob > clob   blob > binay 也可以直接使用数据库提供类型,例如:ora

  • hibernate批量操作实例详解

    本文实例讲述了hibernate批量操作的方法.分享给大家供大家参考,具体如下: Hibernate的批量处理 Hibernate完全以面向对象的方式来操作数据库,当程序里以面向对象的方式操作持久化对象时,将被自动转换为对数据库的操作.例如调用Session的delete()方法来删除持久化对象,Hibernate将负责删除对应的数据记录:当执行持久化对象的set方法时,Hibernate将自动转换为对应的update方法,修改数据库的对应记录. 问题是如果需要同时更新100 000条记录,是不

  • Hibernate+JDBC实现批量插入、更新及删除的方法详解

    本文实例讲述了Hibernate JDBC实现批量插入.更新及删除的方法.分享给大家供大家参考,具体如下: 一.批量插入(两种方式) 1. 通过Hibernate缓存 如果这样写代码进行批量插入(初始设想): package com.anlw.util; import org.hibernate.Session; import org.hibernate.SessionFactory; import org.hibernate.Transaction; import org.hibernate.

  • Hibernate批量处理海量数据的方法

    本文实例讲述了Hibernate批量处理海量数据的方法.分享给大家供大家参考,具体如下: Hibernate批量处理海量其实从性能上考虑,它是很不可取的,浪费了很大的内存.从它的机制上讲,Hibernate它是先把符合条件的数据查出来,放到内存当中,然后再进行操作.实际使用下来性能非常不理想,在笔者的实际使用中采用下面的第三种优化方案的数据是:100000条数据插入数据库, 需要约30分钟,呵呵,晕倒.(本人10分钟插入1000000条数据(字段比较小)) 总结下来有三种来处理以解决性能问题:

  • Thinkphp批量更新数据的方法汇总

    以下小编给大家列出了三种实现thinkphp批量更新数据的方法,写的不好还请见谅,有意见欢迎提出,共同学习进步! 方法一: //批量修改 data二维数组 field关键字段 参考ci 批量修改函数 传参方式 function batch_update($table_name='',$data=array(),$field=''){ if(!$table_name||!$data||!$field){ return false; }else{ $sql='UPDATE '.$table_name

  • php从memcache读取数据再批量写入mysql的方法

    本文实例讲述了php从memcache读取数据再批量写入mysql的方法.分享给大家供大家参考.具体分析如下: 用 Memcache 可以缓解 php和数据库压力下面代码是解决高负载下数据库写入瓶颈问题,遇到最实用的:写入ip pv uv的时候,用户达到每分钟几万访问量,要记录这些数据,实时写入数据库必定奔溃. 用以下技术就能解决,还有如用户注册,同一时间断内,大量用户注册,可以缓存后一次性写入到数据库,代码如下: 复制代码 代码如下: public function cldata(){ $me

  • JSP 开发之hibernate配置二级缓存的方法

    JSP 开发之hibernate配置二级缓存的方法 hibernate二级缓存也称为进程级的缓存或SessionFactory级的缓存. 二级缓存是全局缓存,它可以被所有的session共享. 二级缓存的生命周期和SessionFactory的生命周期一致,SessionFactory可以管理二级缓存. 常用的缓存插件 Hibernater二级缓存是一个插件,下面是几种常用的缓存插件: EhCache:可作为进程范围的缓存,存放数据的物理介质可以是内存或硬盘,对Hibernate的查询缓存提供了

  • Python实现批量下载图片的方法

    本文实例讲述了Python实现批量下载图片的方法.分享给大家供大家参考.具体实现方法如下: #!/usr/bin/env python #-*-coding:utf-8-*-' #Filename:download_file.py import os,sys import re import urllib import urllib2 base_url = 'xxx' array_url = list() pic_url = list() inner_url = list() def get_a

  • ASP.NET批量下载文件的方法

    本文实例讲述了ASP.NET批量下载文件的方法.分享给大家供大家参考.具体方法如下: 一.实现步骤 在用户操作界面,由用户选择需要下载的文件,系统根据所选文件,在服务器上创建用于存储所选文件的临时文件夹,将所选文件拷贝至临时文件夹.然后调用 RAR程序,对临时文件夹进行压缩,然后输出到客户端.最后删除临时文件夹.   二.代码实现   1.ASP.NET批量下载 核心代码 复制代码 代码如下: //遍历服务器指定文件夹下的所有文件 string path = "uploads/Image/&qu

  • thinkPHP批量删除的实现方法分析

    本文实例讲述了thinkPHP批量删除的实现方法.分享给大家供大家参考,具体如下: html: <li> <a class="delete" href="__URL__/deleteSelected/navTabId/__MODULE__" target="selectedTodo" posttype="string" calback="navTabAjaxMenu" rel='ids'

  • YII框架批量插入数据的方法

    本文实例讲述了YII框架批量插入数据的方法.分享给大家供大家参考,具体如下: public function insertSeveral($table, $array_columns) { $sql = ''; $params = array(); $i = 0; foreach ($array_columns as $columns) { $names = array(); $placeholders = array(); foreach ($columns as $name => $valu

  • sql下三种批量插入数据的方法

    本文将介绍三种批量插入数据的方法.第一种方法是使用循环语句逐个将数据项插入到数据库中:第二种方法使用的是SqlBulkCopy,使您可以用其他源的数据有效批量加载 SQL Server 表:第三种使用的方法是sql server中的表值参数方法,表值参数是 SQL Server 2008 中的新参数类型.表值参数是使用用户定义的表类型来声明的.使用表值参数,可以不必创建临时表或许多参数,即可向 Transact-SQL 语句或例程(如存储过程或函数)发送多行数据. 代码示例: 此例子为控制台输出

随机推荐