分享5个python提速技巧,速度瞬间提上来了

目录
  • 1、跳过迭代对象的开头
  • 2、避免数据复制
  • 3、避免变量中间变量
  • 4、循环优化
  • 5、使用numba.jit

1、跳过迭代对象的开头

string_from_file = """  
// Wooden: ...  
// LaoLi: ...  
//  
// Whole: ...  
Wooden LaoLi... 
 """ 
import itertools  
for line in itertools.dropwhile(lambda line: line.startswith("//"), string_from_file.split(" ")):
    print(line) 

2、避免数据复制

# 不推荐写法,代码耗时:6.5秒
def main():
    size = 10000
    for _ in range(size):
        value = range(size)
        value_list = [x for x in value]
        square_list = [x * x for x in value_list]
 
main()
# 推荐写法,代码耗时:4.8秒
def main():
    size = 10000
    for _ in range(size):
        value = range(size)
        square_list = [x * x for x in value]  # 避免无意义的复制

3、避免变量中间变量

# 不推荐写法,代码耗时:0.07秒
def main():
    size = 1000000
    for _ in range(size):
        a = 3
        b = 5
        temp = a
        a = b
        b = temp
 
main()
# 推荐写法,代码耗时:0.06秒
def main():
    size = 1000000
    for _ in range(size):
        a = 3
        b = 5
        a, b = b, a  # 不借助中间变量
 
main()

4、循环优化

# 不推荐写法。代码耗时:6.7秒
def computeSum(size: int) -> int:
    sum_ = 0
    i = 0
    while i < size:
        sum_ += i
        i += 1
    return sum_
 
def main():
    size = 10000
    for _ in range(size):
        sum_ = computeSum(size)
 
main()
# 推荐写法。代码耗时:4.3秒
def computeSum(size: int) -> int:
    sum_ = 0
    for i in range(size):  # for 循环代替 while 循环
        sum_ += i
    return sum_
 
def main():
    size = 10000
    for _ in range(size):
        sum_ = computeSum(size)
 
main()

隐式for循环代替显式for循环

# 推荐写法。代码耗时:1.7秒
def computeSum(size: int) -> int:
    return sum(range(size))  # 隐式 for 循环代替显式 for 循环
 
def main():
    size = 10000
    for _ in range(size):
        sum = computeSum(size)
 
main()

5、使用numba.jit

# 推荐写法。代码耗时:0.62秒
# numba可以将 Python 函数 JIT 编译为机器码执行,大大提高代码运行速度。
import numba
 
@numba.jit
def computeSum(size: float) -> int:
    sum = 0
    for i in range(size):
        sum += i
    return sum
 
def main():
    size = 10000
    for _ in range(size):
        sum = computeSum(size)
 
main()

到此这篇关于分享5个python提速技巧,速度瞬间提上来了的文章就介绍到这了,更多相关python提速技巧内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 使用Protocol Buffers的C语言拓展提速Python程序的示例

    Protocol Buffers (类似XML的一种数据描述语言)最新版本2.3里,protoc-py_out命令只生成原生的Python代码. 尽管PB(Protocol Buffers)可以为C++语言生成快速解析和序列化代码,但是这种方式对于Python不适用,并且手动生成的已包装的代码需要非常大的维护工作.在讨论组里,这是一个常见的功能要求,由于一个必备的客户端组件-AppEngine(根据团队介绍名称为AppEngine),生成原生的Python代码有更高的优先级. 幸运的是, PB

  • python频繁写入文件时提速的方法

    问题背景:有一批需要处理的文件,对于每一个文件,都需要调用同一个函数进行处理,相当耗时. 有没有加速的办法呢?当然有啦,比如说你将这些文件分成若干批,每一个批次都调用自己写的python脚本进行处理,这样同时运行若干个python程序也可以进行加速. 有没有更简单的方法呢?比如说,我一个运行的一个程序里面,同时分为多个线程,然后进行处理? 大概思路:将这些个文件路径的list,分成若干个,至于分成多少,要看自己cpu核心有多少,比如你的cpu有32核的,理论上就可以加速32倍. 代码如下: #

  • 能让Python提速超40倍的神器Cython详解

    让Python提速超过40倍的神器:Cython 人工智能最火的语言,自然是被誉为迄今为止最容易使用的代码之一的Python.Python代码素来以直观.高可读性著称. 然而,易用的背后,是Python无法逾越的障碍:慢.尤其是C程序员,这群快枪手简直无法忍受Python的慢. 所以有人就想了各种方法去解决这个问题,本文就介绍其中的一种.如果你的代码是纯Python,或者你必须用一个大的for循环却无法放入矩阵因为数据必须按顺序处理,那么就可以使用Cython来加速Python. 1.什么是Cy

  • 分享5个python提速技巧,速度瞬间提上来了

    目录 1.跳过迭代对象的开头 2.避免数据复制 3.避免变量中间变量 4.循环优化 5.使用numba.jit 1.跳过迭代对象的开头 string_from_file = """   // Wooden: ...   // LaoLi: ...   //   // Whole: ...   Wooden LaoLi...   """  import itertools   for line in itertools.dropwhile(lamb

  • 分享4个Python中高效省时的技巧

    目录 反转列表 交换两个值 在函数内部循环 减少函数调用次数 总结 今天我想和大家分享 4 个省时的 Python 技巧,可以节省 10~20% 的 Python 执行时间. 反转列表 Python 中通常有两种反转列表的方法:切片或 reverse() 函数调用.这两种方法都可以反转列表,但需要注意的是内置函数 reverse() 会更改原始列表,而切片方法会创建一个新列表. 但是他们的表现呢?哪种方式更有效?让我们看一下下面的例子: 使用切片: $ python -m timeit -n 1

  • 分享15 超级好用得 Python 实用技巧

    目录 01 all or any 02 dir 03 列表(list)推导式 04 pprint 05 repr 06 sh 07 Type hints 08 uuid 09 wikipedia 10 xkcd 11 zip 12 emoji 13 howdoi 14 Jedi 15 **kwargs 01 all or any Python 语言如此流行的众多原因之一,是因为它具有很好的可读性和表现力. 人们经常开玩笑说 Python 是可执行的伪代码.当你可以像这样写代码时,就很难反驳. x

  • 分享18 个 Python 高效编程技巧

    目录 01 交换变量 02 字典推导(Dictionary comprehensions)和集合推导(Set comprehensions) 03 计数时使用Counter计数对象. 04 漂亮的打印出JSON 05 解决FizzBuzz 06 if 语句在行内 07 连接 08 数值比较 09 同时迭代两个列表 10 带索引的列表迭代 11 列表推导式 12 字典推导 13 初始化列表的值 14 列表转换为字符串 15 从字典中获取元素 16 获取列表的子集 17 迭代工具 18 False

  • 分享10提高 Python 代码的可读性的技巧

    目录 1.字符串反转 2.首字母大写 3.查询唯一元素 4.变量交换 5.列表排序 6.列表推导式 7.合并字符串 8.拆分字符串 9.回文串检测 10.统计列表元素出现次数 1. 字符串反转 字符串反转有很多方法,咱们再这里介绍两种:一种是切片,一种是python字符串的reversed方法. # -!- coding: utf-8 -!- string = 'hello world' # 方法1 new_str = string[::-1] ic(new_str) # 方法二 new_str

  • Python小技巧练习分享

    目录 1.反转数字 2.类的说明文档 3.设置 Python 文件的编码 4.旋转字符串 5.实现控制台滚动条 6.print 函数直接写入文件 7.合并 2 个列表 1.反转数字 问题场景: 把数字 789 转换为 987. 典型的数字翻转问题. 解决思路: 将数字的百位十位个位拆解出来,就解开了 编码如下: def reverse_number(number): baiwei = int(number/100) shiwei = int(number%100/10) gewei = int(

  • 分享一些非常实用的Python小技巧

    目录 1.唯一性 2.变位词(相同字母异序词) 3.内存 4.字节大小 5.打印N次字符串 6.首字母大写 7.列表细分 8.压缩 9.计数 10.链式比较 11.逗号分隔 12.元音计数 13.首字母小写 14.展开列表 15.寻找差异 16.输出差异 17.链式函数调用 18. 19.将两个列表转换为字库 20.出现频率最高的元素 21.回文(正反读有一样的字符串) 22.不用if-else语句的计算器 23.随机排序 24.展开列表 1.唯一性 以下方法可以检查给定列表是否有重复的地方,可

  • 几个关于python  Pdf 技巧的分享

    目录 1.读取PDF 2.删除pdf的某些页 3.旋转页面 4.合并pdf 前言: PyPDF2是一个纯Python的开源库,能够分割或合并PDF文件,也可以裁剪或转换PDF文件中的页面.我们还可以使用PyPDF2查看PDF文件的元信息,对PDF文件进行加密等. PyPDF2是一个开源的库,因此在使用之前需要先安装. pip install PyPDF2 1.读取PDF import PyPDF2 reader = PyPDF2.PdfFileReader(open('a.pdf','rb'))

  • 3个 Python 编程技巧

    目录 1.如何按照字典的值的大小进行排序 2.优雅的一次性判断多个条件 3.如何优雅的合并两个字典 今天分享 3 个 Python 编程小技巧,来看看你是否用过? 1.如何按照字典的值的大小进行排序 我们知道,字典的本质是哈希表,本身是无法排序的,但 Python 3.6 之后,字典是可以按照插入的顺序进行遍历的,这就是有序字典,其中的原理,可以阅读为什么 Python3.6 之后字典是有序的. 知道了这一点,就好办了,先把字典的键值对列表排序,然后重新插入新的字典,这样新字典就可以按照值的大小

随机推荐