C程序中Ubuntu、stm32的内存分配问题

目录
  • 一、内存分区概念介绍
    • 1.1、C/C++编译程序的内存占用
    • 1.2、栈和堆、全局/静态存储区和常量存储区的对比
    • 1.3、图片说明
  •  二、C语言编程论证
    • 1.1、Ubuntu测试代码实现
    •  1.2、STM32验证代码实现
    • 1.3、keil下stm32存储观察
  • 三、总结
  • 四、参考资料

一、内存分区概念介绍

1.1、C/C++编译程序的内存占用

1、栈区(stack)
由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。
2、堆区(heap)
一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收 。它与数据结构中的堆不同,分配方式类似于链表。
3、全局区(静态区)(static)
全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域, 未初始化的全局变量、未初始化的静态变量在相邻的另一块区域。当程序结束后,变量由系统释放 。
4、文字常量区
存放常量字符串。当程序结束后,常量字符串由系统释放 。
5、程序代码区
存放函数体的二进制代码。

1、从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。

2、在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。
3、从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或delete释放内存。动态内存的生存期由程序员决定,使用非常灵活,但如果在堆上分配了空间,就有责任回收它,否则运行的程序会出现内存泄漏,频繁地分配和释放不同大小的堆空间将会产生堆内碎块。

1.2、栈和堆、全局/静态存储区和常量存储区的对比

1、栈区: 主要用来存放局部变量, 传递参数, 存放函数的返回地址。.esp 始终指向栈顶, 栈中的数据越多, esp的值越小。

2、堆区: 用于存放动态分配的对象, 当你使用 malloc和new 等进行分配时,所得到的空间就在堆中。动态分配得到的内存区域附带有分配信息, 所以你能够 free和delete它们。

3、数据区: 全局,静态和常量是分配在数据区中的,数据区包括bss(未初始化数据区)和初始化数据区。  

注意: 堆向高内存地址生长; 栈向低内存地址生长; 堆和栈相向而生,堆和栈之间有个临界点,称为stkbrk。

1.3、图片说明

 

补充:

Stack: 栈,存放Automatic Variables,按内存地址由高到低方向生长,其最大大小由编译时确定,速度快,但自由性差,最大空间不大。

Heap: 堆,自由申请的空间,按内存地址由低到高方向生长,其大小由系统内存/虚拟内存上限决定,速度较慢,但自由性大,可用空间大。
每个线程都会有自己的栈,但是堆空间是共用的。

参考文献:https://www.icode9.com/content-1-772915.html 

 二、C语言编程论证

1.1、Ubuntu测试代码实现

1、main.c:

#include <stdio.h>
#include <stdlib.h>
//定义全局变量
int init_global_a = 1;
int uninit_global_a;
static int inits_global_b = 2;
static int uninits_global_b;
void output(int a)
{
	printf("hello");
	printf("%d",a);
	printf("\n");
}

int main( )
{
	//定义局部变量
	int a=2;
	static int inits_local_c=2, uninits_local_c;
    int init_local_d = 1;
    output(a);
    char *p;
    char str[10] = "lyy";
    //定义常量字符串
    char *var1 = "1234567890";
    char *var2 = "qwertyuiop";
    //动态分配
    int *p1=malloc(4);
    int *p2=malloc(4);
    //释放
    free(p1);
    free(p2);
    printf("栈区-变量地址\n");
    printf("                a:%p\n", &a);
    printf("                init_local_d:%p\n", &init_local_d);
    printf("                p:%p\n", &p);
    printf("              str:%p\n", str);
    printf("\n堆区-动态申请地址\n");
    printf("                   %p\n", p1);
    printf("                   %p\n", p2);
    printf("\n全局区-全局变量和静态变量\n");
    printf("\n.bss段\n");
    printf("全局外部无初值 uninit_global_a:%p\n", &uninit_global_a);
    printf("静态外部无初值 uninits_global_b:%p\n", &uninits_global_b);
    printf("静态内部无初值 uninits_local_c:%p\n", &uninits_local_c);
    printf("\n.data段\n");
    printf("全局外部有初值 init_global_a:%p\n", &init_global_a);
    printf("静态外部有初值 inits_global_b:%p\n", &inits_global_b);
    printf("静态内部有初值 inits_local_c:%p\n", &inits_local_c);
    printf("\n文字常量区\n");
    printf("文字常量地址     :%p\n",var1);
    printf("文字常量地址     :%p\n",var2);
    printf("\n代码区\n");
    printf("程序区地址       :%p\n",&main);
    printf("函数地址         :%p\n",&output);
    return 0;
}

2、使用命令创建一个 main.c 文件:

gedit main.c

3、复制粘贴上述代码

4、编译执行

gcc main.c -o main

./main

5、结果展示

 

分析说明:可以从上图可以得出栈区内存地址由高到低方向生长,堆区内存地址由低到高方向生长。而且整个程序的内存也是从高到低的地址进行分配的。 

 1.2、STM32验证代码实现

打开之前做过的串口通讯实验代码,在其中进行修改,后面我也会给出先关串口链接

1、代码更改

修改bsp_usart.h :

添加头文件:

#include <stdio.h>
#include <stdlib.h>

 修改bsp_usart.c :

重写 fputc 函数:

int fputc(int ch, FILE *f)
{
	USART_SendData(DEBUG_USARTx, (uint8_t)ch);

	while(USART_GetFlagStatus(DEBUG_USARTx, USART_FLAG_TXE) == RESET);

	return (ch);
}

main.c : 

#include "stm32f10x.h"
#include "bsp_usart.h"  //添加 bsp_usart.h 头文件

int init_global_a = 1;
int uninit_global_a;
static int inits_global_b = 2;
static int uninits_global_b;

void output(int a)
{
	printf("hello");
	printf("%d",a);
	printf("\n");
}

int main(void)
{
	//定义局部变量
	int a=2;
	static int inits_local_c=2, uninits_local_c;
	int init_local_d = 1;
	char *p;
	char str[10] = "lyy";
	//定义常量字符串
	char *var1 = "1234567890";
	char *var2 = "qwertyuiop";
	//动态分配
	int *p1=malloc(4);
	int *p2=malloc(4);
	USART_Config();//串口初始化
	output(a);
	//释放
	free(p1);
	free(p2);
	printf("栈区-变量地址\n");
	printf("                a:%p\n", &a);
	printf("                init_local_d:%p\n", &init_local_d);
	printf("                p:%p\n", &p);
	printf("              str:%p\n", str);
	printf("\n堆区-动态申请地址\n");
	printf("                   %p\n", p1);
	printf("                   %p\n", p2);
	printf("\n全局区-全局变量和静态变量\n");
	printf("\n.bss段\n");
	printf("全局外部无初值 uninit_global_a:%p\n", &uninit_global_a);
	printf("静态外部无初值 uninits_global_b:%p\n", &uninits_global_b);
	printf("静态内部无初值 uninits_local_c:%p\n", &uninits_local_c);
	printf("\n.data段\n");
	printf("全局外部有初值 init_global_a:%p\n", &init_global_a);
	printf("静态外部有初值 inits_global_b:%p\n", &inits_global_b);
	printf("静态内部有初值 inits_local_c:%p\n", &inits_local_c);
	printf("\n文字常量区\n");
	printf("文字常量地址     :%p\n",var1);
	printf("文字常量地址     :%p\n",var2);
	printf("\n代码区\n");
	printf("程序区地址       :%p\n",&main);
	printf("函数地址         :%p\n",&output);
	return 0;
}

2、编译输出

3、烧录

打开串口调试助手,打开串口后,按一下 RESET 键,显示结果:

 4、分析说明

   与Ubuntu一样,stm32的栈区的地址值是从上到下减小的,堆区则是从上到下增长的。从每个区来看,地址值是从上到下逐步减小的,即栈区的地址是高地址,代码区的地址是处于低地址。

1.3、keil下stm32存储观察

stm32数据的存储位置

1、RAM(随机存取存储器)
存储的内容可通过指令随机读写访问。RAM中的存储的数据在掉电是会丢失,因而只能在开机运行时存储数据。其中RAM又可以分为两种,一种是Dynamic RAM(DRAM动态随机存储器),另一种是Static RAM(SRAM,静态随机存储器)。栈、堆、全局区(.bss段、.data段)都是存放在RAM中。
2、ROM(只读存储器)
只能从里面读出数据而不能任意写入数据。ROM与RAM相比,具有读写速度慢的缺点。但由于其具有掉电后数据可保持不变的优点,因此常用也存放一次性写入的程序和数据,比如主版的BIOS程序的芯片就是ROM存储器。代码区和常量区的内容是不允许被修改的,所以存放于ROM中。

查看:

分析说明:

    从图片中可以看出ROM的地址分配是从0x8000000开始,整个大小为0x40000,这个部分用于存放代码区和文字常量区。RAM的地址分配是从0x20000000开始,其大小是0xC000,这个区域用来存放栈、堆、全局区(.bss段、.data段)。与代码结果显示进行对比,也可以看出对应得部分得地址与设置的是相对应的。 

三、总结

   通过对C语言程序里全局变量、局部变量、堆、栈等概念的重温以及在不同平台进行编程验证,熟悉掌握了C语言中相关概念,并对整体的内存地址分配由高到低,以及栈区内存地址由高到低方向生长,堆区内存地址由低到高方向生长进行了验证。经过本次实验,主要是对C程序的内存分配有进一步的认识,知道一个C程序内存应该包括哪些部分。其中,主要是程序段、数据段、堆栈三个部分。不同系统下面,区域内的地址值变化是不相同。总的来说,是对内存的分配有了比较新的认识。

四、参考资料

https://blog.csdn.net/qq_43279579/article/details/110308101

https://blog.csdn.net/ssj925319/article/details/110727925?spm=1001.2014.3001.5501 

USART串口通信:

链接: https://pan.baidu.com/s/1YspOK2I3Ddm5XntKXKRnXA

提取码: emev 

到此这篇关于C程序中Ubuntu、stm32的内存分配问题的文章就介绍到这了,更多相关C程序Ubuntu、stm32的内存分配内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 详解C语言在STM32中的内存分配问题

    01.前言 不说废话,先上示例代码 uint8_t num_byte[4]; uint32_t num_word; const uint32_t num_word_const = 0x1234; uint32_t *point_heap; int main(void) { uint8_t num_byte_stack; static uint8_t num_byte_static; point_heap = (uint32_t *)malloc(4); *point_heap = 0x3421;

  • C程序中Ubuntu、stm32的内存分配问题

    目录 一.内存分区概念介绍 1.1.C/C++编译程序的内存占用 1.2.栈和堆.全局/静态存储区和常量存储区的对比 1.3.图片说明  二.C语言编程论证 1.1.Ubuntu测试代码实现  1.2.STM32验证代码实现 1.3.keil下stm32存储观察 三.总结 四.参考资料 一.内存分区概念介绍 1.1.C/C++编译程序的内存占用 1.栈区(stack) 由编译器自动分配释放,存放函数的参数值,局部变量的值等.其操作方式类似于数据结构中的栈. 2.堆区(heap) 一般由程序员分配

  • C语言程序中结构体的内存对齐详解

    目录 一.为什么存在内存对齐 二.结构体的内存对齐四规则 三.举例 一.为什么存在内存对齐 1.平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的:某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常. 2. 性能原因: 数据结构(尤其是栈)应该尽可能地在自然边界上对齐. 原因在于,为了访问未对齐的内存,处理器需要作两次内存访问:而对齐的内存访问仅需要一次访问. 总的来说结构体的内存对齐是拿空间来换取时间的做法. 二.结构体的内存对齐四规则 默认情况:默认的对

  • 深入理解JavaScript程序中内存泄漏

    垃圾回收解放了我们,它让我们可将精力集中在应用程序逻辑(而不是内存管理)上.但是,垃圾收集并不神奇.了解它的工作原理,以及如何使它保留本应在很久以前释放的内存,就可以实现更快更可靠的应用程序.在本文中,学习一种定位 JavaScript 应用程序中内存泄漏的系统方法.几种常见的泄漏模式,以及解决这些泄漏的适当方法. 一.简介 当处理 JavaScript 这样的脚本语言时,很容易忘记每个对象.类.字符串.数字和方法都需要分配和保留内存.语言和运行时的垃圾回收器隐藏了内存分配和释放的具体细节. 许

  • C++浅析程序中内存的分布

    C++之程序的内存分布 最近在复习C++相关的知识,整理一下. C++的存储区主要有以下几类: 栈区:就是那些由编译器在需要的时候分配,在不需要的时候自动清楚的变量的存储区.里面的变量通常是局部变量.函数参数等. 堆区:就是那些由new分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个new就要对应一个delete.如果程序员没有释放掉, 那么在程序结束后,操作系统会自动回收.只new不delete会造成内存泄漏. 全局/静态存储区:全局变量和静态变量(static修饰的变量

  • 浅谈js基础数据类型和引用类型,深浅拷贝问题,以及内存分配问题

    js 深浅拷贝问题 浅拷贝一般指的是基本类型的复制 深拷贝一般指引用类型的拷贝,把引用类型的值也拷贝出来 举例 h5的sessionStorage只能存放字符串,所以要存储json时就要把json使用JSON.stringify()把json转换成string,然后再用JSON.parse()转换成json数据 缺点:JSON.parse和JSON.stringify只支持IE9+以上 解决这个问题可以使用深度比那里拷贝方法 js 中内存分配问题(堆和栈) js中基本类型类型一般是存储在栈中的.

  • 深入解析Java并发程序中线程的同步与线程锁的使用

    synchronized关键字 synchronized,我们谓之锁,主要用来给方法.代码块加锁.当某个方法或者代码块使用synchronized时,那么在同一时刻至多仅有有一个线程在执行该段代码.当有多个线程访问同一对象的加锁方法/代码块时,同一时间只有一个线程在执行,其余线程必须要等待当前线程执行完之后才能执行该代码段.但是,其余线程是可以访问该对象中的非加锁代码块的. synchronized主要包括两种方法:synchronized 方法.synchronized 块. synchron

  • VMware中ubuntu虚拟机与windows的端口映射共享一个IP地址的设置教程(图文教程)

    在ubuntu虚拟机中,运行了meteor的后台程序,需要终端进行连接,需要进行ubuntu虚拟机与windows的端口映射(虚拟机与主机共享IP地址). 下面为设置步骤: 1.点击编译,虚拟网络编辑器 2.在虚拟网络编辑器界面,点击下方的更改设置,获取管理员权限 3.选择"NAT模式",在下方VMnet信息中,点击"NAT设置(s)..." 4.点击添加,添加一条端口转发信息 5.第4步,点击添加按钮之后,跳出映射传入端口,输入相关信息,主机端口,类型,虚拟机IP

  • C语言程序中递归算法的使用实例教程

    1.问题:计算n! 数学上的计算公式为: n!=n×(n-1)×(n-2)--2×1 使用递归的方式,可以定义为: 以递归的方式计算4! F(4)=4×F(3) 递归阶段 F(3)=3×F(2) F(2)=2×F(1) F(1)=1 终止条件 F(2)=(2)×(1) 回归阶段 F(3)=(3)×(2) F(4)=(4)×(6) 24 递归完成 以递归方式实现阶乘函数的实现: int fact(int n) { if(n < 0) return 0; else if (n == 0 || n =

  • 避免 Android中Context引起的内存泄露

    Context是我们在编写Android程序经常使用到的对象,意思为上下文对象. 常用的有Activity的Context还是有Application的Context.Activity用来展示活动界面,包含了很多的视图,而视图又含有图片,文字等资源.在Android中内存泄露很容易出现,而持有很多对象内存占用的Activity更加容易出现内存泄露,开发者需要特别注意这个问题. 本文讲介绍Android中Context,更具体的说是Activity内存泄露的情况,以及如何避免Activity内存泄

随机推荐