python神经网络Pytorch中Tensorboard函数使用

目录
  • 所需库的安装
  • 常用函数功能
    • 1、SummaryWriter()
    • 2、writer.add_graph()
    • 3、writer.add_scalar()
    • 4、tensorboard --logdir=
  • 示例代码

所需库的安装

很多人问Pytorch要怎么可视化,于是决定搞一篇。

tensorboardX==2.0
tensorflow==1.13.2

由于tensorboard原本是在tensorflow里面用的,所以需要装一个tensorflow。会自带一个tensorboard。

也可以不装tensorboardX,直接使用pytorch当中的自带的Tensorboard。导入方式如下:

from torch.utils.tensorboard import SummaryWriter

不过由于我使用pytorch当中的自带的Tensorboard的时候有一些bug。所以还是使用tensorboardX来写这篇博客。

常用函数功能

1、SummaryWriter()

这个函数用于创建一个tensorboard文件,其中常用参数有:

log_dir:tensorboard文件的存放路径flush_secs:表示写入tensorboard文件的时间间隔

调用方式如下:

writer = SummaryWriter(log_dir='logs',flush_secs=60)

2、writer.add_graph()

这个函数用于在tensorboard中创建Graphs,Graphs中存放了网络结构,其中常用参数有:

model:pytorch模型

input_to_model:pytorch模型的输入

如下所示为graphs:

调用方式如下:

if Cuda:
    graph_inputs = torch.from_numpy(np.random.rand(1,3,input_shape[0],input_shape[1])).type(torch.FloatTensor).cuda()
else:
    graph_inputs = torch.from_numpy(np.random.rand(1,3,input_shape[0],input_shape[1])).type(torch.FloatTensor)
writer.add_graph(model, (graph_inputs,))

3、writer.add_scalar()

这个函数用于在tensorboard中加入loss,其中常用参数有:

  • tag:标签,如下图所示的Train_loss
  • scalar_value:标签的值
  • global_step:标签的x轴坐标

调用方式如下:

writer.add_scalar('Train_loss', loss, (epoch*epoch_size + iteration))

4、tensorboard --logdir=

在完成tensorboard文件的生成后,可在命令行调用该文件,tensorboard网址。具体代码如下:

tensorboard --logdir=D:\Study\Collection\Tensorboard-pytorch\logs

示例代码

import torch
from torch.autograd import Variable
import torch.nn.functional as functional
from tensorboardX import SummaryWriter
import matplotlib.pyplot as plt
import numpy as np
# x的shape为(100,1)
x = torch.from_numpy(np.linspace(-1,1,100).reshape([100,1])).type(torch.FloatTensor)
# y的shape为(100,1)
y = torch.sin(x) + 0.2*torch.rand(x.size())
class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        # Applies a linear transformation to the incoming data: :math:y = xA^T + b
        # 全连接层,公式为y = xA^T + b
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)
    def forward(self, x):
        # 隐含层的输出
        hidden_layer = functional.relu(self.hidden(x))
        output_layer = self.predict(hidden_layer)
        return output_layer
# 类的建立
net = Net(n_feature=1, n_hidden=10, n_output=1)
writer = SummaryWriter('logs')
graph_inputs = torch.from_numpy(np.random.rand(2,1)).type(torch.FloatTensor)
writer.add_graph(net, (graph_inputs,))
# torch.optim是优化器模块
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)
# 均方差loss
loss_func = torch.nn.MSELoss()
for t in range(1000):
    prediction = net(x)
    loss = loss_func(prediction, y)
    # 反向传递步骤
    # 1、初始化梯度
    optimizer.zero_grad()
    # 2、计算梯度
    loss.backward()
    # 3、进行optimizer优化
    optimizer.step()
    writer.add_scalar('loss',loss, t)
writer.close()

效果如下:

以上就是python神经网络Pytorch中Tensorboard函数使用的详细内容,更多关于Pytorch Tensorboard函数的资料请关注我们其它相关文章!

(0)

相关推荐

  • Pytorch中TensorBoard及torchsummary的使用详解

    1.TensorBoard神经网络可视化工具 TensorBoard是一个强大的可视化工具,在pytorch中有两种调用方法: 1.from tensorboardX import SummaryWriter 这种方法是在官方还不支持tensorboard时网上有大神写的 2.from torch.utils.tensorboard import SummaryWriter 这种方法是后来更新官方加入的 1.1 调用方法 1.1.1 创建接口SummaryWriter 功能:创建接口 调用方法:

  • 在Pytorch中简单使用tensorboard

    一.tensorboard的简要介绍 TensorBoard是一个独立的包(不是pytorch中的),这个包的作用就是可视化您模型中的各种参数和结果. 下面是安装: pip install tensorboard 安装 TensorBoard 后,这些实用程序使您可以将 PyTorch 模型和指标记录到目录中,以便在 TensorBoard UI 中进行可视化. PyTorch 模型和张量以及 Caffe2 网络和 Blob 均支持标量,图像,直方图,图形和嵌入可视化. SummaryWrite

  • 教你如何在Pytorch中使用TensorBoard

    什么是TensorboardX Tensorboard 是 TensorFlow 的一个附加工具,可以记录训练过程的数字.图像等内容,以方便研究人员观察神经网络训练过程.可是对于 PyTorch 等其他神经网络训练框架并没有功能像 Tensorboard 一样全面的类似工具,一些已有的工具功能有限或使用起来比较困难 (tensorboard_logger, visdom等) .TensorboardX 这个工具使得 TensorFlow 外的其他神经网络框架也可以使用到 Tensorboard

  • pytorch下tensorboard的使用程序示例

    目录 一.tensorboard程序实例: 1.代码 2.在命令提示符中操作 3.在浏览器中打开网址 4.效果 二.writer.add_scalar()与writer.add_scalars()参数说明 1.概述 2.参数说明 3.writer.add_scalar()效果 4.writer.add_scalars()效果 我们都知道tensorflow框架可以使用tensorboard这一高级的可视化的工具,为了使用tensorboard这一套完美的可视化工具,未免可以将其应用到Pytorc

  • pytorch使用tensorboardX进行loss可视化实例

    最近pytorch出了visdom,也没有怎么去研究它,主要是觉得tensorboardX已经够用,而且用起来也十分的简单 pip install tensorboardX 然后在代码里导入 from tensorboardX import SummaryWriter 然后声明一下自己将loss写到哪个路径下面 writer = SummaryWriter('./log') 然后就可以愉快的写loss到你得这个writer了 niter = epoch * len(train_loader) +

  • Pytorch用Tensorboard来观察数据

    目录 1.Tensorboard 1.使用add_scalar()输入代码 2.使用add_image()输入代码 上一章讲数据的处理,这一章讲数据处理之后呈现的结果,即你有可能看到Loss的走向等,这样方便我们调试代码. 1.Tensorboard 有两个常用的方法: 一个是add_scalar()显:示曲线 一个是add_image()显示图像 首先安装Tensorboard 在你的编译环境(conda activate XXX)中输入命令 pip install tensorboard 1

  • python神经网络Pytorch中Tensorboard函数使用

    目录 所需库的安装 常用函数功能 1.SummaryWriter() 2.writer.add_graph() 3.writer.add_scalar() 4.tensorboard --logdir= 示例代码 所需库的安装 很多人问Pytorch要怎么可视化,于是决定搞一篇. tensorboardX==2.0 tensorflow==1.13.2 由于tensorboard原本是在tensorflow里面用的,所以需要装一个tensorflow.会自带一个tensorboard. 也可以不

  • python神经网络pytorch中BN运算操作自实现

    BN 想必大家都很熟悉,来自论文: <Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift> 也是面试常考察的内容,虽然一行代码就能搞定,但是还是很有必要用代码自己实现一下,也可以加深一下对其内部机制的理解. 通用公式: 直奔代码: 首先是定义一个函数,实现BN的运算操作: def batch_norm(is_training, x, gamma, beta, mo

  • pytorch中Parameter函数用法示例

    目录 用法介绍 代码介绍 用法介绍 pytorch中的Parameter函数可以对某个张量进行参数化.它可以将不可训练的张量转化为可训练的参数类型,同时将转化后的张量绑定到模型可训练参数的列表中,当更新模型的参数时一并将其更新. torch.nn.parameter.Parameter data (Tensor):表示需要参数化的张量 requires_grad (bool, optional):表示是否该张量是否需要梯度,默认值为True 代码介绍  pytorch中的Parameter函数具

  • 基于python及pytorch中乘法的使用详解

    numpy中的乘法 A = np.array([[1, 2, 3], [2, 3, 4]]) B = np.array([[1, 0, 1], [2, 1, -1]]) C = np.array([[1, 0], [0, 1], [-1, 0]]) A * B : # 对应位置相乘 np.array([[ 1, 0, 3], [ 4, 3, -4]]) A.dot(B) : # 矩阵乘法 ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim

  • PyTorch中topk函数的用法详解

    听名字就知道这个函数是用来求tensor中某个dim的前k大或者前k小的值以及对应的index. 用法 torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor) input:一个tensor数据 k:指明是得到前k个数据以及其index dim: 指定在哪个维度上排序, 默认是最后一个维度 largest:如果为True,按照大到小排序: 如果为False,按照小到大排序

  • pytorch 中pad函数toch.nn.functional.pad()的用法

    padding操作是给图像外围加像素点. 为了实际说明操作过程,这里我们使用一张实际的图片来做一下处理. 这张图片是大小是(256,256),使用pad来给它加上一个黑色的边框.具体代码如下: import torch.nn,functional as F import torch from PIL import Image im=Image.open("heibai.jpg",'r') X=torch.Tensor(np.asarray(im)) print("shape:

  • python copy模块中的函数实例用法

    1.copy.copy()函数可用于复制列表或字典等可变值,复制后的列表和原列表是两个独立的列表. import copy origin = [1,2,3] new = copy.copy(origin) new[0] = 0 print("origin = ",origin) print("new = ",new) 2.如果要复制的列表中有列表,则使用deepcopy()函数完全复制. import copy origin =[[1,2,3],['a','b','

  • pytorch中permute()函数用法补充说明(矩阵维度变化过程)

    目录 一.前言 二.举例解释 1.permute(0,1,2) 2.permute(0,1,2) ⇒ permute(0,2,1) 3.permute(0,2,1) ⇒ permute(1,0,2) 4.permute(1,0,2) ⇒ permute(0,2,1) 三.写在最后 一.前言 之前写了篇torch中permute()函数用法文章,在详细的说一下permute函数里维度变化的详细过程 非常感谢@m0_46225327对本文案例更加细节补充 注意: 本文是这篇torch中permute

  • pytorch中permute()函数用法实例详解

    目录 前言 三维情况 变化一:不改变任何参数 变化二:1与2交换 变化三:0与1交换 变化四:0与2交换 变化五:0与1交换,1与2交换 变化六:0与1交换,0与2交换 总结 前言 本文只讨论二维三维中的permute用法 最近的Attention学习中的一个permute函数让我不理解 这个光说太抽象 我就结合代码与图片解释一下 首先创建一个三维数组小实例 import torch x = torch.linspace(1, 30, steps=30).view(3,2,5) # 设置一个三维

  • Python pandas库中isnull函数使用方法

    前言: python的pandas库中有⼀个⼗分便利的isnull()函数,它可以⽤来判断缺失值,我们通过⼏个例⼦学习它的使⽤⽅法.⾸先我们创建⼀个dataframe,其中有⼀些数据为缺失值. import pandas as pd import numpy as np df = pd.DataFrame(np.random.randint(10,99,size=(10,5))) df.iloc[4:6,0] = np.nan df.iloc[5:7,2] = np.nan df.iloc[7,

随机推荐