基于pytorch 预训练的词向量用法详解

如何在pytorch中使用word2vec训练好的词向量

torch.nn.Embedding()

这个方法是在pytorch中将词向量和词对应起来的一个方法. 一般情况下,如果我们直接使用下面的这种:

self.embedding = torch.nn.Embedding(num_embeddings=vocab_size, embedding_dim=embeding_dim)
num_embeddings=vocab_size  表示词汇量的大小
embedding_dim=embeding_dim 表示词向量的维度

这种情况下, 因为没有指定训练好的词向量, 所以embedding会帮咱们生成一个随机的词向量(但是在我刚刚测试的一个情感二分类问题中, 我发现好像用不用预训练的词向量, 结果差不多, 不过不排除是因为当时使用的模型比较简单, 导致一些特征根本就没提取出来).

如果我想使用word2vec预训练好的词向量该怎么做呢?

其实很简单,pytorch已经给我们提供好了接口

self.embedding.weight.data.copy_(torch.from_numpy(embeding_vector))
self.embedding.weight.requires_grad = False

上面两句代码的意思, 第一句就是导入词向量, 第二句表示的是在反向传播的时候, 不要对这些词向量进行求导更新. 我还看到有人会在优化器那里使用这样的代码:

# emotion_net是我定义的模型
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, emotion_net.parameters()), lr=1e-3, betas=(0.9, 0.99))

大概意思也是为了保证词向量不会被反向传播而更新, 具体有没有用我就不清楚了.

其实我感觉大家比较在意的其实应该是embeding_vector的形式, 下面我就介绍一下embeding_vector的形式

为了讲述方便, 这里定义出下面几个矩阵

​embeding_vector:表示词向量,每行是一个词的词向量,有多少行就说明有多少单词

word_list:表示单词列表,里面就是单词

word_to_index:这个矩阵将word_list中的单词和embeding_vector中的位置对应起来 ​

其实embeding_vector是一个numpy矩阵, 当然你看到了, 实际输入到pytorch的时候, 是需要转换成tensor类型的. 这个矩阵是什么样子的呢? 其中这个矩阵是 [vocab_size×embeding_dim] [vocab\_size \times embeding\_dim][vocab_size×embeding_dim] 的形式. 其中一共包含vocab_size vocab\_sizevocab_size 个单词, 每个单词的维度是 embed_dim embed\_dimembed_dim, 我们把这样一个矩阵输入就行了.

之后, 我们要做的其实就是将 word_to_index word\_to\_indexword_to_index 这个矩阵搞出来, 这里的单词转下标的矩阵, 就是联系 embeding_vector embeding\_vectorembeding_vector 和 word_list word\_listword_list 这两个矩阵的中间者. 我们在输入到torch.nn.Embedding中之前, 需要先通过 word_to_index word\_to\_indexword_to_index 将单词转换成 embeding_vector embeding\_vectorembeding_vector 的下标就可以了.

以上这篇基于pytorch 预训练的词向量用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch中的embedding词向量的使用方法

    Embedding 词嵌入在 pytorch 中非常简单,只需要调用 torch.nn.Embedding(m, n) 就可以了,m 表示单词的总数目,n 表示词嵌入的维度,其实词嵌入就相当于是一个大矩阵,矩阵的每一行表示一个单词. emdedding初始化 默认是随机初始化的 import torch from torch import nn from torch.autograd import Variable # 定义词嵌入 embeds = nn.Embedding(2, 5) # 2

  • 基于pytorch 预训练的词向量用法详解

    如何在pytorch中使用word2vec训练好的词向量 torch.nn.Embedding() 这个方法是在pytorch中将词向量和词对应起来的一个方法. 一般情况下,如果我们直接使用下面的这种: self.embedding = torch.nn.Embedding(num_embeddings=vocab_size, embedding_dim=embeding_dim) num_embeddings=vocab_size 表示词汇量的大小 embedding_dim=embeding

  • 基于Python中求和函数sum的用法详解

    基于Python中求和函数sum的用法详解 今天在看<集体编程智慧>这本书的时候,看到一段Python代码,当时是百思不得其解,总觉得是书中排版出错了,后来去了解了一下sum的用法,看了一些Python大神写的代码后才发现是自己浅薄了!特在此记录一下.书中代码段摘录如下: from math import sqrt def sim_distance(prefs, person1, person2): # 得到shared_items的列表 si = {} for item in prefs[p

  • 基于DataFrame筛选数据与loc的用法详解

    DataFrame筛选数据与loc用法 python中pandas下的DataFrame是一个很不错的数据结构,附带了许多操作.运算.统计等功能. 如何从一个DataFrame中筛选中出一个元素呢. 以tushare返回的交易日信息为例. df = ts.trade_cal() 数据如下: calendarDate isOpen 0 1990/12/19 1 1 1990/12/20 1 2 1990/12/21 1 3 1990/12/22 0 4 1990/12/23 0 5 1990/12

  • python获取txt文件词向量过程详解

    在读取https://github.com/Embedding/Chinese-Word-Vectors中的中文词向量时,选择了一个有3G多的txt文件,之前在做词向量时用的是word2vec,所以直接导入模型然后indexword即可. 因为这是一个txt大文件,尝试了DataFrame,np.loadtxt等,都没有成功,其中主要遇到的问题是: 如何读取完整的大文件,而不会出现内存不足memery error等问题 将读取出来的文件,保存为npy文件 根据词找到对应的向量 解决办法: 尝试使

  • Pytorch中的学习率衰减及其用法详解

    Pytorch 学习率衰减及其用法 学习率衰减是一个非常有效的炼丹技巧之一,在神经网络的训练过程中,当accuracy出现震荡或loss不再下降时,进行适当的学习率衰减是一个行之有效的手段,很多时候能明显提高accuracy. Pytorch中有两种学习率调整(衰减)方法: 使用库函数进行调整: 手动调整. 1. 使用库函数进行调整: Pytorch学习率调整策略通过 torch.optim.lr_sheduler 接口实现.pytorch提供的学习率调整策略分为三大类,分别是: (1)有序调整

  • Spring中基于Java的配置@Configuration和@Bean用法详解

    一.首先,需要xml中进行少量的配置来启动Java配置: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://ww

  • PyTorch预训练Bert模型的示例

    本文介绍以下内容: 1. 使用transformers框架做预训练的bert-base模型: 2. 开发平台使用Google的Colab平台,白嫖GPU加速: 3. 使用datasets模块下载IMDB影评数据作为训练数据. transformers模块简介 transformers框架为Huggingface开源的深度学习框架,支持几乎所有的Transformer架构的预训练模型.使用非常的方便,本文基于此框架,尝试一下预训练模型的使用,简单易用. 本来打算预训练bert-large模型,发现

  • pytorch 预训练层的使用方法

    pytorch 预训练层的使用方法 将其他地方训练好的网络,用到新的网络里面 加载预训练网络 1.原先已经训练好一个网络 AutoEncoder_FC() 2.首先加载该网络,读取其存储的参数 3.设置一个参数集 cnnpre = AutoEncoder_FC() cnnpre.load_state_dict(torch.load('autoencoder_FC.pkl')['state_dict']) cnnpre_dict =cnnpre.state_dict() 加载新网络 1.设置新的网

  • 基于BootStrap Metronic开发框架经验小结【五】Bootstrap File Input文件上传插件的用法详解

    Bootstrap文件上传插件File Input是一个不错的文件上传控件,但是搜索使用到的案例不多,使用的时候,也是一步一个脚印一样摸着石头过河,这个控件在界面呈现上,叫我之前使用过的Uploadify 好看一些,功能也强大些,本文主要基于我自己的框架代码案例,介绍其中文件上传插件File Input的使用. 1.文件上传插件File Input介绍 这个插件主页地址是:http://plugins.krajee.com/file-input,可以从这里看到很多Demo的代码展示:http:/

随机推荐