pytorch之ImageFolder使用详解

pytorch之ImageFolder

torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet、COCO、MNIST、LSUN等数据集,可通过诸如torchvision.datasets.CIFAR10来调用。在这里介绍一个会经常使用到的Dataset——ImageFolder。

ImageFolder假设所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类名,其构造函数如下:

ImageFolder(root, transform=None, target_transform=None, loader=default_loader)

它主要有四个参数:

root:在root指定的路径下寻找图片

transform:对PIL Image进行的转换操作,transform的输入是使用loader读取图片的返回对象

target_transform:对label的转换

loader:给定路径后如何读取图片,默认读取为RGB格式的PIL Image对象

label是按照文件夹名顺序排序后存成字典,即{类名:类序号(从0开始)},一般来说最好直接将文件夹命名为从0开始的数字,这样会和ImageFolder实际的label一致,如果不是这种命名规范,建议看看self.class_to_idx属性以了解label和文件夹名的映射关系。

图片结构如下所示:

from torchvision import transforms as T
import matplotlib.pyplot as plt
from torchvision.datasets import ImageFolder

dataset = ImageFolder('data/dogcat_2/')

# cat文件夹的图片对应label 0,dog对应1
print(dataset.class_to_idx)

# 所有图片的路径和对应的label
print(dataset.imgs)

# 没有任何的transform,所以返回的还是PIL Image对象
#print(dataset[0][1])# 第一维是第几张图,第二维为1返回label
#print(dataset[0][0]) # 为0返回图片数据
plt.imshow(dataset[0][0])
plt.axis('off')
plt.show()

加上transform

normalize = T.Normalize(mean=[0.4, 0.4, 0.4], std=[0.2, 0.2, 0.2])
transform = T.Compose([
     T.RandomResizedCrop(224),
     T.RandomHorizontalFlip(),
     T.ToTensor(),
     normalize,
])
dataset = ImageFolder('data1/dogcat_2/', transform=transform)

# 深度学习中图片数据一般保存成CxHxW,即通道数x图片高x图片宽
#print(dataset[0][0].size())

to_img = T.ToPILImage()
# 0.2和0.4是标准差和均值的近似
a=to_img(dataset[0][0]*0.2+0.4)
plt.imshow(a)
plt.axis('off')
plt.show()

以上这篇pytorch之ImageFolder使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch绘制并显示loss曲线和acc曲线,LeNet5识别图像准确率

    我用的是Anaconda3 ,用spyder编写pytorch的代码,在Anaconda3中新建了一个pytorch的虚拟环境(虚拟环境的名字就叫pytorch). 以下内容仅供参考哦~~ 1.首先打开Anaconda Prompt,然后输入activate pytorch,进入pytorch. 2.输入pip install tensorboardX,安装完成后,输入python,用from tensorboardX import SummaryWriter检验是否安装成功.如下图所示: 3.

  • 使用pytorch进行图像的顺序读取方法

    产生此次实验的原因:当我使用pytorch进行神经网络的训练时,需要每次向CNN传入一组图像,并且这些图片的存放位置是在两个文件夹中: A文件夹:图片1a,图片2a,图片3a--图片1000a B文件夹:图片1b, 图片2b,图片3b--图片1000b 所以在每个循环里,我都希望能从A中取出图片Na,同时从B文件夹中取出对应的图片Nb. 测试一:通过pytorch官方文档中的dataloader搭配python中的迭代器iterator dataset = dset.ImageFolder( r

  • pytorch 批次遍历数据集打印数据的例子

    我就废话不多说了,直接上代码吧! from os import listdir import os from time import time import torch.utils.data as data import torchvision.transforms as transforms from torch.utils.data import DataLoader def printProgressBar(iteration, total, prefix='', suffix='', d

  • pytorch之ImageFolder使用详解

    pytorch之ImageFolder torchvision已经预先实现了常用的Dataset,包括前面使用过的CIFAR-10,以及ImageNet.COCO.MNIST.LSUN等数据集,可通过诸如torchvision.datasets.CIFAR10来调用.在这里介绍一个会经常使用到的Dataset--ImageFolder. ImageFolder假设所有的文件按文件夹保存,每个文件夹下存储同一个类别的图片,文件夹名为类名,其构造函数如下: ImageFolder(root, tra

  • pytorch AvgPool2d函数使用详解

    我就废话不多说了,直接上代码吧! import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np input = Variable(torch.Tensor([[[1, 3, 3, 4, 5, 6, 7], [1, 2, 3, 4, 5, 6, 7]], [[1, 3, 3, 4, 5, 6, 7], [1, 2, 3

  • Pytorch之finetune使用详解

    finetune分为全局finetune和局部finetune.首先介绍一下局部finetune步骤: 1.固定参数 for name, child in model.named_children(): for param in child.parameters(): param.requires_grad = False 后,只传入 需要反传的参数,否则会报错 filter(lambda param: param.requires_grad, model.parameters()) 2.调低学

  • Anaconda+vscode+pytorch环境搭建过程详解

    1.安装Anaconda Anaconda指的是一个开源的Python发行版本,其包含了conda.Python等180多个科学包及其依赖项.在官网上下载https://www.anaconda.com/distribution/,因为服务器在国外会很慢,建议从清华镜像https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/下载. 2.安装VScode 需要在Anaconda再装VScode,因为Anaconda公司和微软公司的合作,不用在对进

  • pytorch 限制GPU使用效率详解(计算效率)

    问题 用过 tensorflow 的人都知道, tf 可以限制程序在 GPU 中的使用效率,但 pytorch 中没有这个操作. 思路 于是我想到了一个代替方法,玩过单片机点灯的同学都知道,灯的亮度是靠占空比实现的,这实际上也是计算机的运行原理. 那我们是不是也可以通过增加 GPU 不工作的时间,进而降低 GPU 的使用效率 ? 主要代码 import time ... rest_time = 0.15 ... for _ in range( XXX ): ... outputs = all_G

  • Pytorch自动求导函数详解流程以及与TensorFlow搭建网络的对比

    一.定义新的自动求导函数 在底层,每个原始的自动求导运算实际上是两个在Tensor上运行的函数.其中,forward函数计算从输入Tensor获得的输出Tensors.而backward函数接收输出,Tensors对于某个标量值得梯度,并且计算输入Tensors相对于该相同标量值得梯度. 在Pytorch中,可以容易地通过定义torch.autograd.Function的子类实现forward和backward函数,来定义自动求导函数.之后就可以使用这个新的自动梯度运算符了.我们可以通过构造一

  • Python人工智能学习PyTorch实现WGAN示例详解

    目录 1.GAN简述 2.生成器模块 3.判别器模块 4.数据生成模块 5.判别器训练 6.生成器训练 7.结果可视化 1.GAN简述 在GAN中,有两个模型,一个是生成模型,用于生成样本,一个是判别模型,用于判断样本是真还是假.但由于在GAN中,使用的JS散度去计算损失值,很容易导致梯度弥散的情况,从而无法进行梯度下降更新参数,于是在WGAN中,引入了Wasserstein Distance,使得训练变得稳定.本文中我们以服从高斯分布的数据作为样本. 2.生成器模块 这里从2维数据,最终生成2

  • 人工智能学习Pytorch张量数据类型示例详解

    目录 1.python 和 pytorch的数据类型区别 2.张量 ①一维张量 ②二维张量 ③3维张量 ④4维张量 1.python 和 pytorch的数据类型区别 在PyTorch中无法展示字符串,因此表达字符串,需要将其转换成编码的类型,比如one_hot,word2vec等. 2.张量 在python中,会有标量,向量,矩阵等的区分.但在PyTorch中,这些统称为张量tensor,只是维度不同而已. 标量就是0维张量,只有一个数字,没有维度. 向量就是1维张量,是有顺序的数字,但没有"

  • pytorch中使用LSTM详解

    目录 LSMT层 1.__init__方法 2.forward方法的输入 3.forward方法的输出 LSTMCell LSMT层 可以在troch.nn模块中找到LSTM类 lstm = torch.nn.LSTM(*paramsters) 1.__init__方法 首先对nn.LSTM类进行实例化,需要传入的参数如下图所示: 一般我们关注这4个: input_size表示输入的每个token的维度,也可以理解为一个word的embedding的维度. hidden_size表示隐藏层也就是

  • 如何使用Pytorch完成图像分类任务详解

    目录 概述: 一. 数据准备 二.定义一个卷积神经网络 三.完整代码如下: 总结 概述: 本文将通过组织自己的训练数据,使用Pytorch深度学习框架来训练自己的模型,最终实现自己的图像分类!本篇文章以识别阳台为例子,进行讲述. 一. 数据准备 深度学习的基础就是数据,完成图像分类,当然数据也必不可少.先使用爬虫爬取阳台图片1200张以及非阳台图片1200张,图片的名字从0.jpg一直编到2400.jpg,把爬取的图片放置在同一个文件夹中命名为image(如下图1所示). 图1 针对百度图片的爬

随机推荐