基于Numba提高python运行效率过程解析

Numba是Python的即时编译器,在使用NumPy数组和函数以及循环的代码上效果最佳。使用Numba的最常见方法是通过其装饰器集合,这些装饰器可应用于您的函数以指示Numba对其进行编译。调用Numba装饰函数时,它会被“即时”编译为机器代码以执行,并且您的全部或部分代码随后可以本机机器速度运行!

安装numba(我在这里加了--default-timeout=10000,防止安装时出现timeout的错误)

pip --default-timeout=10000 install -U numba
from numba import jit
import time
def add(x):
  he=0
  for i in range(x):
    he+=i
  return he
start=time.time()
res=add(100000000)
print(res)
end=time.time()
print(end-start)
耗时5s
4999999950000000
5.707650184631348

使用Numba的JIT装饰器@jit,以尝试加快某些功能的运行速度

from numba import jit
import time
@jit
def add(x):
  he=0
  for i in range(x):
    he+=i
  return he
start=time.time()
res=add(100000000)
print(res)
end=time.time()
print(end-start)
耗时0.14s,快了近40倍
4999999950000000
0.14488554000854492

看吧,快了40倍!

numba仅对numpy,for和while循环有效!

参考numba官网:http://numba.pydata.org/numba-doc/latest/developer/inlining.html#example-using-numba-jit

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 使用numba对Python运算加速的方法

    有时候需要比较大的计算量,这个时候Python的效率就很让人捉急了,此时可以考虑使用numba 进行加速,效果提升明显~ (numba 安装貌似很是繁琐,建议安装Anaconda,里面自带安装好各种常用科学计算库) from numba import jit @jit def t(count=1000): total = 0 for i in range(int(count)): total += i return total 测试效果: (关于__wrapped__ 见我的博文: 浅谈解除装饰

  • 提升Python效率之使用循环机制代替递归函数

    斐波那契数列 当年,典型的递归题目,斐波那契数列还记得吗? def fib(n): if n==1 or n==2: return 1 else: return fib(n-1)+fib(n-2) 当然, 为了程序健壮性,加上 try...except... def fib(n): if isinstance(n, int): print('兄弟,输入正整数哈') return try: if n==1 or n==2: return 1 elif n <= 0: print('兄弟别输入0或负

  • python 删除大文件中的某一行(最有效率的方法)

    用 python 处理一个文本时,想要删除其中中某一行,常规的思路是先把文件读入内存,在内存中修改后再写入源文件. 但如果要处理一个很大的文本,比如GB级别的文本时,这种方法不仅需要占用很大内存,而且一次性读入内存时耗费时间,还有可能导致内存溢出. 所以,需要用另外一个思路去处理. 我们可以使用 open() 方法把需要修改的文件打开为两个文件,然后逐行读入内存,找到需要删除的行时,用后面的行逐一覆盖.实现方式见以下代码. with open('file.txt', 'r') as old_fi

  • python多线程共享变量的使用和效率方法

    python多线程可以使任务得到并发执行,但是有时候在执行多次任务的时候,变量出现"意外". import threading,time n=0 start=time.time() def b1(num): global n n=n+num n=n-num def b2(num): for i in range(1000000): b1(num) t1=threading.Thread(target=b2,args=(5,)) t2=threading.Thread(target=b2

  • 为什么从Python 3.6开始字典有序并效率更高

    在Python 3.5(含)以前,字典是不能保证顺序的,键值对A先插入字典,键值对B后插入字典,但是当你打印字典的Keys列表时,你会发现B可能在A的前面. 但是从Python 3.6开始,字典是变成有顺序的了.你先插入键值对A,后插入键值对B,那么当你打印Keys列表的时候,你就会发现B在A的后面. 不仅如此,从Python 3.6开始,下面的三种遍历操作,效率要高于Python 3.5之前: for key in 字典 for value in 字典.values() for key, va

  • Python 中list ,set,dict的大规模查找效率对比详解

    很多时候我们可能要频繁的进行元素的find 或in操作,本人一直天真的以为python的list做了hash,通过红黑树来高效查找···直到今天我真正来测试它和set,dict的查找效率时,才发现自已想太多了!!!! 先看代码: __author__ = 'jmh081701' import numpy import time l=[] sl=set() dl=dict() r=numpy.random.randint(0,10000000,100000) for i in range(0,10

  • Python利用IPython提高开发效率

    一.IPython 简介 IPython 是一个交互式的 Python 解释器,而且它更加高效. 它和大多传统工作模式(编辑 -> 编译 -> 运行)不同的是, 它采用的工作模式是:执行 -> 探索 ,而大部分和数据分析相关的代 码都含有探索式操作(比如试误法和迭代法),所以 IPython 能大大提高编码效率. IPython 发展到现在,它不仅仅只是一个加强版的 Python shell 了, 它集成了 GUI 控制台,这可以让你直接进行绘图操作:它还有一个基于 Web 的交互式笔记

  • 基于Numba提高python运行效率过程解析

    Numba是Python的即时编译器,在使用NumPy数组和函数以及循环的代码上效果最佳.使用Numba的最常见方法是通过其装饰器集合,这些装饰器可应用于您的函数以指示Numba对其进行编译.调用Numba装饰函数时,它会被"即时"编译为机器代码以执行,并且您的全部或部分代码随后可以本机机器速度运行! 安装numba(我在这里加了--default-timeout=10000,防止安装时出现timeout的错误) pip --default-timeout=10000 install

  • spring boot基于DRUID实现数据源监控过程解析

    这篇文章主要介绍了spring boot基于DRUID实现数据源监控过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 随着需求和技术的日益革新,spring boot框架是越来越流行,她也越来越多地出现在我们的项目中,当然最主要的原因还是因为spring boot构建项目实在是太爽了,构建方便,开发简单,而且效率高.今天我们并不是来专门学习spring boot项目的,我们要讲的是数据源的加密和监控,监控到好说,就是不监控也没什么问题,但

  • 基于springboot处理date参数过程解析

    这篇文章主要介绍了基于springboot处理date参数过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 前言 最近在后台开发中遇到了时间参数的坑,就单独把这个问题提出来找时间整理了一下: 正文 测试方法 bean代码: public class DateModelNoAnnotation { private Integer id; private Date receiveDate; } controller代码: @RestContr

  • 基于SPRINGBOOT配置文件占位符过程解析

    这篇文章主要介绍了基于SPRINGBOOT配置文件占位符过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.配置文件占位符 1.application.properties server.port=8088 debug=false product.id=ID:${random.uuid} product.name=da mao mao product.weight=${random.int} product.fristLinePrice

  • Python爬虫过程解析之多线程获取小米应用商店数据

    本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理. 以下文章来源于IT共享之家 ,作者IT共享者 前言 小米应用商店给用户发现最好的安卓应用和游戏,安全可靠,可是要下载东西要一个一个地搜索太麻烦了.而且速度不是很快. 今天用多线程爬取小米应用商店的游戏模块.快速获取. 二.项目目标 目标 :应用分类 - 聊天社交 应用名称, 应用链接,显示在控制台供用户下载. 三.涉及的库和网站 1.网址:百度搜 - 小米应用商店,进入官网. 2.涉及的库:re

  • 如何基于SpringBoot部署外部Tomcat过程解析

    这篇文章主要介绍了SpringBoot以war包形式部署到外部Tomcat过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 SpringBoot 项目打包时能打成 .jar 与 .war包文件,.jar使用 java -jar xx.jar 就可以启动,而 .war 可以部署到tomcat的 webapps 中,随tomcat的启动而启动. SpringBoot 本身是内置tomcat的,如果想部署到外部tomcat, 就要做一些改变.

  • Python基于DB-API操作MySQL数据库过程解析

    Python提供了一个标准数据库API,称为DB-API,用于处理基于SQL的数据库. 与任何底层数据库的交互都可以使用DB-API,因为DB-API在代码与驱动程序之间提供了一个抽象层,可以根据需要替换底层数据库,而无需丢弃现有的代码. DB-API与底层数据库交互示例: ①代码 ⇆ ②使用DB-API ⇆ ③数据库驱动程序 ⇆ ④底层数据库(如MySQL等) 使用DB-API操作MySQL数据库例子 1.Windows安装MySQL数据库驱动程序MySQL-Connector/Python

  • Python基于xlutils修改表格内容过程解析

    一.xlutils是什么 是一个提供了许多操作修改excel文件方法的库: 属于python的第三方模块 xlrd库用于读取excel文件中的数据,xlwt库用于将数据写入excel文件,修改用xlutils模块: xlutils库也仅仅是通过复制一个副本进行操作后保存一个新文件,像是xlrd库和xlwt库之间的一座桥梁,需要依赖于xlrd和xlwt两个库 二.xlutils基础及应用 2.1 xlutils模块安装 命令行输入如下,进行联网在线安装 pip install xlutils 2.

  • Python基于进程池实现多进程过程解析

    1.注意:pool必须在 if __name__ == '__main__' 下面运行,不然会报错 2.多进程内出现错误会直接跳过该进程,并且默认不会打印错误信息 3.if__name__下面的数据需要通过参数传入主函数里面,不然主函数获取不到该数据值而报错. 4.若不通过传参形式传入数据,可以定义全局变量.但是全局变量的值不能在多进程里面进行修改. 代码如下 from multiprocessing import Pool # 进程池,用于多进程 import os # 用于获取当前执行的文件

  • 六个窍门助你提高Python运行效率

    不喜欢Python的人经常会吐嘈Python运行太慢.但是,事实并非如此.尝试以下六个窍门,来为你的Python应用提速. 窍门一:关键代码使用外部功能包 Python简化了许多编程任务,但是对于一些时间敏感的任务,它的表现经常不尽人意.使用C/C++或机器语言的外部功能包处理时间敏感任务,可以有效提高应用的运行效率.这些功能包往往依附于特定的平台,因此你要根据自己所用的平台选择合适的功能包.简而言之,这个窍门要你牺牲应用的可移植性以换取只有通过对底层主机的直接编程才能获得的运行效率.以下是一些

随机推荐