Matplotlib使用字符串代替变量绘制散点图的方法

要点说明

在绘制散点图的时候,通常使用变量作为输入数据的载体。
其实,也可以使用字符串作为输入数据的存储载体。

下面代码的data = {“a”: x, “b”: y, “color”: c, “size”: s}正是将散点图的输入数据、颜色和标记大小放在数据字典data中作为键值对,对应的key是字符串string。

Matplotlib编程实现

import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure()
ax = fig.gca()

x = np.random.rand(50)*10
y = np.random.rand(50)*10+20
s = np.random.rand(50)*100
c = np.random.rand(50)

data = {"a": x, "b": y, "color": c, "size": s}

ax.scatter("a", "b", c="color", s="size", data=data)

ax.set(xlabel="X", ylabel="Y")

plt.show()

成品图

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 使用matplotlib中scatter方法画散点图

    本文实例为大家分享了用matplotlib中scatter方法画散点图的具体代码,供大家参考,具体内容如下 1.最简单的绘制方式 绘制散点图是数据分析过程中的常见需求.python中最有名的画图工具是matplotlib,matplotlib中的scatter方法可以方便实现画散点图的需求.下面我们来绘制一个最简单的散点图. 数据格式如下: 0   746403 1   1263043 2   982360 3   1202602 ... 其中第一列为X坐标,第二列为Y坐标.下面我们来画图. #

  • Python使用matplotlib绘制余弦的散点图示例

    本文实例讲述了Python使用matplotlib绘制余弦的散点图.分享给大家供大家参考,具体如下: 一 代码 import numpy as np import pylab as pl a = np.arange(0,2.0*np.pi,0.1) b = np.cos(a) #绘制散点图 pl.scatter(a,b) pl.show() 二 运行结果 三 修改散点符号代码 import numpy as np import pylab as pl a = np.arange(0,2.0*np

  • python matplotlib库绘制散点图例题解析

    假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温随时间(天)变化的某种规律? a = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23] b = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,

  • matplotlib在python上绘制3D散点图实例详解

    大家可以先参考官方演示文档: 效果图: ''' ============== 3D scatterplot ============== Demonstration of a basic scatterplot in 3D. ''' from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np def randrange(n, vmin, vmax): ''' Helper f

  • python3使用matplotlib绘制散点图

    本文实例为大家分享了python3使用matplotlib绘制散点图,并标注图例,轴,供大家参考,具体内容如下 代码 from matplotlib import pyplot as plt from matplotlib import font_manager # 使得中文可以显示出来 my_font = font_manager.FontProperties(fname="/usr/share/fonts/truetype/arphic/ukai.ttc") y_3 = [11,

  • Matplotlib scatter绘制散点图的方法实现

    前言 考虑到很多同学可能还没有安装matplotlib包,这里给大家提供我常用的安装方法.首先Win键 + R,输入命令cmd打开命令行工具,再次在命令行工具中输入pip install matplotlib就可以直接安装了,安装后会提示安装成功. 一.简单散点图 1.代码 import numpy as np import matplotlib.pyplot as plt #生成散点数据 n = 1024 X = np.random.normal(0,1,n) Y = np.random.no

  • 使用matplotlib画散点图的方法

    如下所示: import matplotlib.pyplot as plt import numpy as np a = np.array([1,2,3,4]) b = np.array([1,2,3,4]) c = np.array([2,3,4,5]) d = np.array([2,3,4,5]) ''' figure的作用新建绘画窗口,独立显示绘画的图片 figsize 表示新建绘画窗口的大小 dpi是分辨率 ''' plt.figure(figsize = (8,5),dpi = 80

  • python使用matplotlib画柱状图、散点图

    本文实例为大家分享了python使用matplotlib画柱状图.散点图的具体代码,供大家参考,具体内容如下 柱状图(plt.bar) 代码与注释 import numpy as np from matplotlib import pyplot as plt plt.figure(figsize=(9,6)) n = 8 X = np.arange(n)+1 #X是1,2,3,4,5,6,7,8,柱的个数 # numpy.random.uniform(low=0.0, high=1.0, siz

  • Matplotlib使用字符串代替变量绘制散点图的方法

    要点说明 在绘制散点图的时候,通常使用变量作为输入数据的载体. 其实,也可以使用字符串作为输入数据的存储载体. 下面代码的data = {"a": x, "b": y, "color": c, "size": s}正是将散点图的输入数据.颜色和标记大小放在数据字典data中作为键值对,对应的key是字符串string. Matplotlib编程实现 import matplotlib.pyplot as plt import

  • python matplotlib库绘图实战之绘制散点图

    目录 一.导入库 二.设置文字 三.设置坐标轴参数 四.绘制点 五.对点的继续处理 1.自定义颜色 2.颜色映射 补充1 补充2 补充3 总结 一.导入库 import matplotlib.pyplot as plt 二.设置文字 plt.title("double number", fontsize=24) plt.xlabel("number", fontsize=14) plt.ylabel("double", fontsize=14)

  • Python matplotlib 绘制散点图详解建议收藏

    目录 前言 1. 散点图概述 什么是散点图? 散点图使用场景 绘制散点图步骤 案例展示  2. 散点图属性 设置散点大小 设置散点颜色 设置散点样式 设置透明度 设置散点边框 3. 添加折线散点图 4. 多类型散点图 5. 颜色条散点图 6. 曲线散点图 总结 前言 我们在matplotlib模块学习中,发现有常用的反映数据变化的折线图,对比数据类型差异的柱状图和反应数据频率分布情况的直方图. 其实在数据统计图表中,有一种图表是散列点分布在坐标中,反应数据随着自变量变化的趋势. 本期,我们将详细

  • Python matplotlib 绘制散点图详解建议收藏

    目录 前言 1. 散点图概述 什么是散点图? 散点图使用场景 绘制散点图步骤 案例展示  2. 散点图属性 设置散点大小 设置散点颜色 设置散点样式 设置透明度 设置散点边框 3. 添加折线散点图 4. 多类型散点图 5. 颜色条散点图 6. 曲线散点图 总结 前言 我们在matplotlib模块学习中,发现有常用的反映数据变化的折线图,对比数据类型差异的柱状图和反应数据频率分布情况的直方图. 往期内容速看 Python用 matplotlib 绘制柱状图 Python matplotlib底层

  • python使用Plotly绘图工具绘制散点图、线形图

    今天在研究Plotly绘制散点图的方法,供大家参考,具体内容如下 使用Python3.6 + Plotly Plotly版本2.0.0 在开始之前先说说,还需要安装库Numpy,安装方法在我的另一篇博客中有写到:python3.6下Numpy库下载与安装图文教程 因为Plotly没有自己独立的线性图形函数,所以把线性图形与散点图形全部用一个函数实现 这个函数是Scatter函数 下面举几个简单的例子 先画一个纯散点图,代码如下: import plotly import plotly.graph

  • Python matplotlib绘制散点图配置(万能模板案例)

    目录 散点图 散点图一行代码显示 加颜色的散点图 颜色深浅表示数值大小 散点图显示颜色和大小 自定义图表散点图 散点图万能模板 其他模板 散点图 散点图是指在 回归分析中,数据点在直角坐标系平面上的 分布图,散点图表示因变量随 自变量而 变化的大致趋势,据此可以选择合适的函数 对数据点进行 拟合. 用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式.散点图将序列显示为一组点.值由点在 图表中的位置表示.类别由图表中的不同标记表示.散点图通常用于比较跨

  • Python利用matplotlib绘制散点图的新手教程

    前言 上篇文章介绍了使用matplotlib绘制折线图,参考:https://www.jb51.net/article/198991.htm,本篇文章继续介绍使用matplotlib绘制散点图. 一.matplotlib绘制散点图 # coding=utf-8 import matplotlib.pyplot as plt years = [2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019] turnovers =

  • python学习之matplotlib绘制散点图实例

    要绘制单个点,可使用函数scatter(),并向其传递一对x和y坐标,它将在指定位置绘制一个点: """使用scatter()绘制散点图""" import matplotlib.pyplot as plt plt.scatter(2, 4) plt.show() 下面来设置输出的样式:添加标题,给轴加上标签,并确保所有文本都大到能够看清.并使用scatter()绘制一系列点 """使用scatter()绘制散点图&

随机推荐