在R语言中实现Logistic逻辑回归的操作

逻辑回归是拟合回归曲线的方法,当y是分类变量时,y = f(x)。典型的使用这种模式被预测Ÿ给定一组预测的X。预测因子可以是连续的,分类的或两者的混合。

R中的逻辑回归实现

R可以很容易地拟合逻辑回归模型。要调用的函数是glm(),拟合过程与线性回归中使用的过程没有太大差别。在这篇文章中,我将拟合一个二元逻辑回归模型并解释每一步。

数据集

我们将研究泰坦尼克号数据集。这个数据集有不同版本可以在线免费获得,但我建议使用Kaggle提供的数据集。

目标是预测生存(如果乘客幸存,则为1,否则为0)基于某些诸如服务等级,性别,年龄等特征。

我们将使用分类变量和连续变量。

数据清理过程

在处理真实数据集时,我们需要考虑到一些数据可能丢失的情况,因此我们需要为我们的分析准备数据集。

作为第一步,我们使用该函数加载csv数据read.csv()。

使每个缺失值编码为NA。

training.data.raw < - read.csv('train.csv',header = T,na.strings = c(“”))

现在我们需要检查缺失的值,查看每个变量的唯一值,使用sapply()函数将函数作为参数传递给数据框的每一列。


PassengerId    Survived      Pclass        Name         Sex
          0           0           0           0           0
        Age       SibSp       Parch      Ticket        Fare
        177           0           0           0           0
      Cabin    Embarked
        687           2 

length(unique(x)))

PassengerId    Survived      Pclass        Name         Sex
        891           2           3         891           2
        Age       SibSp       Parch      Ticket        Fare
         89           7           7         681         248
      Cabin    Embarked
        148           4

对缺失值进行可视化处理可能会有所帮助:可以绘制数据集并显示缺失值:

机舱有太多的缺失值,我们不使用它。

使用subset()函数我们对原始数据集进行子集化,只选择相关列。

data < - subset(training.data.raw,select = c(2,3,5,6,7,8,10,12))

现在我们需要解释其他缺失的值。通过在拟合函数内设置参数来拟合广义线性模型时,R可以很容易地处理它们。

有不同的方法可以做到这一点,一种典型的方法是用现有的平均值,中位数或模式代替缺失值。我将使用平均值。

data$ Age [is.na(data $ Age)] < - mean(data$ Age,na.rm = T)
 

就分类变量而言,使用read.table()或read.csv()默认会将分类变量编码为因子。

为了更好地理解R如何处理分类变量,我们可以使用contrasts()函数。

在进行拟合过程之前,先清洁和格式化数据。这个预处理步骤对于获得模型的良好拟合和更好的预测能力通常是至关重要的。

模型拟合

我们将数据分成两部分:训练和测试集。训练集将用于拟合我们的模型。

model <- glm(Survived ~.,family=binomial(link='logit'),data=train)

通过使用函数,summary()我们获得了我们模型的结果:


Deviance Residuals:
    Min       1Q   Median       3Q      Max
-2.6064  -0.5954  -0.4254   0.6220   2.4165
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept)  5.137627   0.594998   8.635  < 2e-16 ***
Pclass      -1.087156   0.151168  -7.192 6.40e-13 ***
Sexmale     -2.756819   0.212026 -13.002  < 2e-16 ***
Age         -0.037267   0.008195  -4.547 5.43e-06 ***
SibSp       -0.292920   0.114642  -2.555   0.0106 *
Parch       -0.116576   0.128127  -0.910   0.3629
Fare         0.001528   0.002353   0.649   0.5160
EmbarkedQ   -0.002656   0.400882  -0.007   0.9947
EmbarkedS   -0.318786   0.252960  -1.260   0.2076
---
Signif. codes:  0 ‘***' 0.001 ‘**' 0.01 ‘*' 0.05 ‘.' 0.1 ‘ ' 1

解释我们的逻辑回归模型的结果

现在我们可以分析拟合并解释模型告诉我们什么。

首先,我们可以看到SibSp,Fare和Embarked没有统计意义。至于统计上显着的变量,性别具有最低的p值,这表明乘客的性别与存活的可能性有很强的关联。

预测因子的负系数表明所有其他变量相同,男性乘客不太可能存活下来。

由于男性是虚拟变量,因此男性将对数概率降低2.75,而单位年龄增加则将对数概率降低0.037。

现在我们可以运行anova()模型上的函数来分析偏差表

Analysis of Deviance Table
Model: binomial, link: logit
Response: Survived
Terms added sequentially (first to last)
         Df Deviance Resid. Df Resid. Dev  Pr(>Chi)
NULL                       799    1065.39
Pclass    1   83.607       798     981.79 < 2.2e-16 ***
Sex       1  240.014       797     741.77 < 2.2e-16 ***
Age       1   17.495       796     724.28 2.881e-05 ***
SibSp     1   10.842       795     713.43  0.000992 ***
Parch     1    0.863       794     712.57  0.352873
Fare      1    0.994       793     711.58  0.318717
Embarked  2    2.187       791     709.39  0.334990    

零偏差和剩余偏差之间的差异越大越好。通过分析表格,我们可以看到每次添加一个变量时出现偏差的情况。

同样,增加Pclass,Sex and Age可以显着减少残余偏差。

这里的大p值表示没有变量的模型或多或少地解释了相同的变化量。最终你想看到的是一个显着的下降和偏差AIC。

评估模型的预测能力

在上面的步骤,我们简要评价模型的拟合。通过设置参数type='response',R将以P(y = 1 | X)的形式输出概率。我们的决策边界将是0.5。如果P(y = 1 | X)> 0.5,则y = 1,否则y = 0。请注意,对于某些应用场景,不同的阈值可能是更好的选择。

 fitting.results < - ifelse(fitted.results> 0.5,1,0)
misClasificError < - mean(fitted.results!= test $ Survived

测试集上的0.84精度是相当不错的结果。但是,如果您希望得到更精确的分数,最好运行交叉验证,如k折交叉验证验证。

作为最后一步,我们将绘制ROC曲线并计算二元分类器典型性能测量的AUC(曲线下面积)。

ROC是通过在各种阈值设置下将真阳性率(TPR)与假阳性率(FPR)作图而产生的曲线,而AUC是ROC曲线下的面积。作为一个经验法则,具有良好预测能力的模型应该接近于1。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • R语言中c()函数与paste()函数的区别说明

    c()函数:将括号中的元素连接起来,并不创建向量 paste()函数:连接括号中的元素 例如 c(1, 2:4),结果为1 2 3 4 paste(1, 2:4),结果为"1 2" "1 3" "1 4" c(2, "and"),结果为"2" "and" paste(2, "and"),结果为"2 and" 补充:R语言中paste函数的参数sep

  • R语言通过parallel包实现多线程运行方式

    总的来说,R的运算速度不算快,不过类似并行运算之类的改进可以提高运算的性能.下面非常简要地介绍如何利用R语言进行并行运算 library(parallel) cl.cores <- detectCores() cl <- makeCluster(cl.cores) detectCores( )检查当前电脑可用核数. makeCluster(cl.cores)使用刚才检测的核并行运算.R-Doc里这样描述makeCluster函数:Creates a set of copies of R run

  • 基于R语言赋值符号的区别说明

    R语言赋值可以用=或<-,一般都建议使用<-,那你知道这两个之间的区间吗?那你有没有见过'<-'和'='这种赋值方法吗?今天就来和大家聊聊这基本的赋值符号都有哪些区别. 首先我们来看看符号的优先级,和java,c这些编程语言的优先级类似.下面这些都取自R帮助文档,输入?Syntax即可查看,它是根据优先级从高到低排列的. :: ::: access variables in a namespace $ @ component / slot extraction [ [[ indexing

  • R语言中cut()函数的用法说明

    R语言cut()函数使用 cut()切割将x的范围划分为时间间隔,并根据其所处的时间间隔对x中的值进行编码. 参数:breaks:两个或更多个唯一切割点或单个数字(大于或等于2)的数字向量,给出x被切割的间隔的个数. breaks采用fivenum():返回五个数据:最小值.下四分位数.中位数.上四分位数.最大值. labels为区间数,打标签 ordered_result 逻辑结果应该是一个有序的因素吗? 先用fivenum求出5个数,再用labels为每两个数之间,贴标签,采用(]的区间,

  • R语言向量下标操作

    向量下标即元素在向量中的位置,在实践中我们可以利用下标(元素的位置)来找出自己想要的数. 利用runif函数生成包含10个正整数的向量x. options(digits = 1) set.seed(1234) x <- runif(10,min = 1,max = 20) x [1] 3 13 13 13 17 13 1 5 14 11 正整数下标 我们可以输入正整数作为下标来找出对应位置的元素. 在[]内输入下标. #向量x的第一位置的元素 x[1] [1] 3 #向量x的第2位置的元素 x[

  • R语言-有负下标里才能有零介绍

    1.只有负下标里才能有零 先看一个例子 >a<-c(1,2,3,4) >a[-1:1] > a[-1:1] Error in a[-1:1] : 只有负下标里才能有零 (1)只有负下标里才能有零,在这里的意思为: a[-1:0] 可行 a[0:4]也可行 a[-1:1]不可行 也就是说要么是负索引到0,或者0到正索引,但不能同时出现正负索引. (2)a[0]结果为numberic(0),结果没有意义,如 > a[0]+10.9 numeric(0) > a[1]+10.

  • R语言多线程运算操作(解决R循环慢的问题)

    已经大半年没有更新博客了..最近都跑去写分析报告半年没有R 这次记录下关于R循环(百万级以上)死慢死慢的问题,这个问题去年就碰到过,当时也尝试过多线程,but failed......昨天试了下,终于跑通了,而且过程还挺顺利 step1 先查下自己电脑几核的,n核貌似应该选跑n个线程,线程不是越多越好,线程个数和任务运行时间是条开口向下的抛物线,最高点预计在电脑的核数上. detectCores( )检查当前电脑可用核数 我的是4所以step2选的是4 library(parallel) cl.

  • R语言-summary()函数的用法解读

    summary():获取描述性统计量,可以提供最小值.最大值.四分位数和数值型变量的均值,以及因子向量和逻辑型向量的频数统计等. 结果解读如下: 1. 调用:Call lm(formula = DstValue ~ Month + RecentVal1 + RecentVal4 + RecentVal6 + RecentVal8 + RecentVal12, data = trainData) 当创建模型时,以上代码表明lm是如何被调用的. 2. 残差统计量:Residuals Min 1Q M

  • 在R语言中实现Logistic逻辑回归的操作

    逻辑回归是拟合回归曲线的方法,当y是分类变量时,y = f(x).典型的使用这种模式被预测Ÿ给定一组预测的X.预测因子可以是连续的,分类的或两者的混合. R中的逻辑回归实现 R可以很容易地拟合逻辑回归模型.要调用的函数是glm(),拟合过程与线性回归中使用的过程没有太大差别.在这篇文章中,我将拟合一个二元逻辑回归模型并解释每一步. 数据集 我们将研究泰坦尼克号数据集.这个数据集有不同版本可以在线免费获得,但我建议使用Kaggle提供的数据集. 目标是预测生存(如果乘客幸存,则为1,否则为0)基于

  • R语言多元Logistic逻辑回归应用实例

    可以使用逐步过程确定多元逻辑回归.此函数选择模型以最小化AIC. 如何进行多元逻辑回归 可以使用阶梯函数通过逐步过程确定多元逻辑回归.此函数选择模型以最小化AIC. 通常建议不要盲目地遵循逐步程序,而是要使用拟合统计(AIC,AICc,BIC)比较模型,或者根据生物学或科学上合理的可用变量建立模型. 多元相关是研究潜在自变量之间关系的一种工具.例如,如果两个独立变量彼此相关,可能在最终模型中都不需要这两个变量,但可能有理由选择一个变量而不是另一个变量. 多元相关 创建数值变量的数据框 Data.

  • R语言中逻辑回归知识点总结

    逻辑回归是回归模型,其中响应变量(因变量)具有诸如True / False或0/1的分类值. 它实际上基于将其与预测变量相关的数学方程测量二元响应的概率作为响应变量的值. 逻辑回归的一般数学方程为 y = 1/(1+e^-(a+b1x1+b2x2+b3x3+...)) 以下是所使用的参数的描述 y是响应变量. x是预测变量. a和b是作为数字常数的系数. 用于创建回归模型的函数是glm()函数. 语法 逻辑回归中glm()函数的基本语法是 glm(formula,data,family) 以下是

  • 详解R语言中的多项式回归、局部回归、核平滑和平滑样条回归模型

    在标准线性模型中,我们假设 .当线性假设无法满足时,可以考虑使用其他方法. 多项式回归 扩展可能是假设某些多项式函数, 同样,在标准线性模型方法(使用GLM的条件正态分布)中,参数  可以使用最小二乘法获得,其中  在  . 即使此多项式模型不是真正的多项式模型,也可能仍然是一个很好的近似值 .实际上,根据 Stone-Weierstrass定理,如果  在某个区间上是连续的,则有一个统一的近似值  ,通过多项式函数. 仅作说明,请考虑以下数据集 db = data.frame(x=xr,y=y

  • 详解R语言中生存分析模型与时间依赖性ROC曲线可视化

    R语言简介 R是用于统计分析.绘图的语言和操作环境.R是属于GNU系统的一个自由.免费.源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具. 人们通常使用接收者操作特征曲线(ROC)进行二元结果逻辑回归.但是,流行病学研究中感兴趣的结果通常是事件发生时间.使用随时间变化的时间依赖性ROC可以更全面地描述这种情况下的预测模型. 时间依赖性ROC定义 令 Mi为用于死亡率预测的基线(时间0)标量标记. 当随时间推移观察到结果时,其预测性能取决于评估时间 t.直观地说,在零时间测量的标记值应该

  • 详解R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计

    MCMC是从复杂概率模型中采样的通用技术. 蒙特卡洛 马尔可夫链 Metropolis-Hastings算法 问题 如果需要计算有复杂后验pdf p(θ| y)的随机变量θ的函数f(θ)的平均值或期望值. 您可能需要计算后验概率分布p(θ)的最大值. 解决期望值的一种方法是从p(θ)绘制N个随机样本,当N足够大时,我们可以通过以下公式逼近期望值或最大值 将相同的策略应用于通过从p(θ| y)采样并取样本集中的最大值来找到argmaxp(θ| y). 解决方法 1.1直接模拟 1.2逆CDF 1.

  • R语言中向量和矩阵简单运算的实现

    一.向量运算 向量是有相同基本类型的元素序列,一维数组,定义向量的最常用办法是使用函数c(),它把若干个数值或字符串组合为一个向量. 1.R语言向量的产生方法 > x <- c(1,2,3) > x [1] 1 2 3 2.向量加减乘除都是对其对应元素进行的,例如下面 > x <- c(1,2,3) > y <- x*2 > y [1] 2 4 6 (注:向量的整数除法是%/%,取余是%%.) 3.向量的内积,有两种方法. 第一种方法:%*% > x

  • R语言中对数据框的列名重命名的实现

    报错类型 Error: All arguments must be named plyr中的rename和dplyr中的rename用法是不同的. plyr::rename rename(data, c(old=new)) dplyr::rename rename(data, new = old) Example 比如, 默认的是plyr的rename, 运行下面命令, 会报错: d <- data.frame(old1=1:3, old2=4:6, old3=7:9) d library(ti

  • 详解R语言中的表达式、数学公式、特殊符号

      在R语言的绘图函数中,如果文本参数是合法的R语言表达式,那么这个表达式就被用Tex类似的规则进行文本格式化. y <- function(x) (exp(-(x^2)/2))/sqrt(2*pi) plot(y, -5, 5, main = expression(f(x) == frac(1,sqrt(2*pi))*e^(-frac(x^2,2))), lwd = 3, col = "blue") library(ggplot2) x <- seq(0, 2*pi, b

  • R语言中矩阵matrix和数据框data.frame的使用详解

    本文主要介绍了R语言中矩阵matrix和数据框data.frame的一些使用,分享给大家,具体如下: "一,矩阵matrix" "创建向量" x_1=c(1,2,3) x_1=c(1:3) x_2=1:3 typeof(x_1)==typeof(x_2)#查看目标类型 x_3=seq(1,6,length=3)#将1--6分为3个数 a<-rep(1:3,each=3) #1到3依次重复 c<-rep(1:3,times=3) #1到3重复3次 d<

随机推荐