人工智能学习pyTorch的ResNet残差模块示例详解

目录
  • 1.定义ResNet残差模块
    • ①各层的定义
    • ②前向传播
  • 2.ResNet18的实现
    • ①各层的定义
    • ②前向传播
  • 3.测试ResNet18

1.定义ResNet残差模块

一个block中,有两个卷积层,之后的输出还要和输入进行相加。因此一个block的前向流程如下:

输入x→卷积层→数据标准化→ReLU→卷积层→数据标准化→数据和x相加→ReLU→输出out

中间加上了数据的标准化(通过nn.BatchNorm2d实现),可以使得效果更好一些。

①各层的定义

②前向传播

在前向传播中输入x,过程中根据前向流程,调用上面定义的层即可。

如此,便定义好了一个残差的模块。

2.ResNet18的实现

此处的ResNet18并没有涉及到太多细节,只是一个大致的内容。

在初始化的时候,定义好所需要使用的模块,根据上面定义好的残差模块,调用即可。在这里使用了4次残差模块,将通道数从输入的3(也就是RGB),变成了512通道。也就是最终提取的高级特征。提取完特征,直接输入给Linear方法,得到图片在10种图片类型上的结果,用于预测以及损失值的求解。

①各层的定义

②前向传播

同样的,调用上面定义好的层,根据流程传播即可。

3.测试ResNet18

如下图,输入的是2张图,RGB,长宽均是32的数据。

通过ResNet18之后,输出的是2张图,每张图对应10种类型的不同取值logits。

过程中的通道数目的转换如下面的结果所示:3→64→128→256→512→512

过程中的尺寸转换,根据设置的卷积核,以及步长,会有不同的结果。但总体都是为了得到更高级的特征,最终输入全连层,得到Logits。

以上就是人工智能学习pyTorch的ResNet残差模块示例详解的详细内容,更多关于PyTorch人工智能学习ResNet残差模块的资料请关注我们其它相关文章!

(0)

相关推荐

  • 人工智能学习Pytorch数据集分割及动量示例详解

    目录 1.数据集分割 2.正则化 3.动量和学习率衰减 1.数据集分割 通过datasets可以直接分别获取训练集和测试集. 通常我们会将训练集进行分割,通过torch.utils.data.random_split方法. 所有的数据都需要通过torch.util.data.DataLoader进行加载,才可以得到可以使用的数据集. 具体代码如下: 2. 2.正则化 PyTorch中的正则化和机器学习中的一样,不过设置方式不一样. 直接在优化器中,设置weight_decay即可.优化器中,默认

  • 人工智能学习PyTorch实现CNN卷积层及nn.Module类示例分析

    目录 1.CNN卷积层 2. 池化层 3.数据批量标准化 4.nn.Module类 ①各类函数 ②容器功能 ③参数管理 ④调用GPU ⑤存储和加载 ⑥训练.测试状态切换 ⑦ 创建自己的层 5.数据增强 1.CNN卷积层 通过nn.Conv2d可以设置卷积层,当然也有1d和3d. 卷积层设置完毕,将设置好的输入数据,传给layer(),即可完成一次前向运算.也可以传给layer.forward,但不推荐. 2. 池化层 池化层的核大小一般是2*2,有2种方式: maxpooling:选择数据中最大

  • 人工智能学习Pytorch进阶操作教程

    目录 一.合并与分割 1.cat拼接 2.stack堆叠 3.拆分 ①Split按长度拆分 ②Chunk按数量拆分 二.基本运算 1.加减乘除 2.矩阵相乘 3.次方计算 4. clamp 三.属性统计 1.求范数 2.求极值.求和.累乘 3. dim和keepdim 4.topk和kthvalue 5.比较运算 6.高阶操作 ①where ②gather 一.合并与分割 1.cat拼接 直接按照指定的dim维度进行合并,要求除了所需要合并的维度之外,其他的维度需要是一样的 2.stack堆叠

  • pytorch制作自己的LMDB数据操作示例

    本文实例讲述了pytorch制作自己的LMDB数据操作.分享给大家供大家参考,具体如下: 前言 记录下pytorch里如何使用lmdb的code,自用 制作部分的Code code就是ASTER里数据制作部分的代码改了点,aster_train.txt里面就算图片的完整路径每行一个,图片同目录下有同名的txt,里面记着jpg的标签 import os import lmdb # install lmdb by "pip install lmdb" import cv2 import n

  • 人工智能学习Pytorch梯度下降优化示例详解

    目录 一.激活函数 1.Sigmoid函数 2.Tanh函数 3.ReLU函数 二.损失函数及求导 1.autograd.grad 2.loss.backward() 3.softmax及其求导 三.链式法则 1.单层感知机梯度 2. 多输出感知机梯度 3. 中间有隐藏层的求导 4.多层感知机的反向传播 四.优化举例 一.激活函数 1.Sigmoid函数 函数图像以及表达式如下: 通过该函数,可以将输入的负无穷到正无穷的输入压缩到0-1之间.在x=0的时候,输出0.5 通过PyTorch实现方式

  • 人工智能学习pyTorch自建数据集及可视化结果实现过程

    目录 一.自定义数据集 1.文件夹映射 2.图片对应标签 3.训练及测试数据分割 4.数据处理 二.ResNet处理 三.训练及可视化 1.数据集导入 2.测试函数 3.训练过程及可视化 一.自定义数据集 现有数据如下: 5个文件夹,每个文件夹是神奇宝贝的一种. 每个图片形状.大小.格式不一. 我们训练CNN的时候需要的是tensor类型的数据,因此需要将所有的图片进行下列转换: 1.对文件夹编号,进行映射,比如妙蛙种子文件夹编号0,皮卡丘编号1等. 2.对文件夹中所有图片,进行编号的对应,这个

  • 使用 pytorch 创建神经网络拟合sin函数的实现

    我们知道深度神经网络的本质是输入端数据和输出端数据的一种高维非线性拟合,如何更好的理解它,下面尝试拟合一个正弦函数,本文可以通过简单设置节点数,实现任意隐藏层数的拟合. 基于pytorch的深度神经网络实战,无论任务多么复杂,都可以将其拆分成必要的几个模块来进行理解. 1)构建数据集,包括输入,对应的标签y 2) 构建神经网络模型,一般基于nn.Module继承一个net类,必须的是__init__函数和forward函数.__init__构造函数包括创建该类是必须的参数,比如输入节点数,隐藏层

  • 人工智能学习pyTorch的ResNet残差模块示例详解

    目录 1.定义ResNet残差模块 ①各层的定义 ②前向传播 2.ResNet18的实现 ①各层的定义 ②前向传播 3.测试ResNet18 1.定义ResNet残差模块 一个block中,有两个卷积层,之后的输出还要和输入进行相加.因此一个block的前向流程如下: 输入x→卷积层→数据标准化→ReLU→卷积层→数据标准化→数据和x相加→ReLU→输出out 中间加上了数据的标准化(通过nn.BatchNorm2d实现),可以使得效果更好一些. ①各层的定义 ②前向传播 在前向传播中输入x,过

  • TensorFlow人工智能学习张量及高阶操作示例详解

    目录 一.张量裁剪 1.tf.maximum/minimum/clip_by_value() 2.tf.clip_by_norm() 二.张量排序 1.tf.sort/argsort() 2.tf.math.topk() 三.TensorFlow高阶操作 1.tf.where() 2.tf.scatter_nd() 3.tf.meshgrid() 一.张量裁剪 1.tf.maximum/minimum/clip_by_value() 该方法按数值裁剪,传入tensor和阈值,maximum是把数

  • Python机器学习从ResNet到DenseNet示例详解

    目录 从ResNet到DenseNet 稠密块体 过渡层 DenseNet模型 训练模型 从ResNet到DenseNet 上图中,左边是ResNet,右边是DenseNet,它们在跨层上的主要区别是:使用相加和使用连结. 最后,将这些展开式结合到多层感知机中,再次减少特征的数量.实现起来非常简单:我们不需要添加术语,而是将它们连接起来.DenseNet这个名字由变量之间的"稠密连接"而得来,最后一层与之前的所有层紧密相连.稠密连接如下图所示: 稠密网络主要由2部分构成:稠密块(den

  • Go语言学习教程之结构体的示例详解

    目录 前言 可导出的标识符 嵌入字段 提升 标签 结构体与JSON相互转换 结构体转JSON JSON转结构体 练习代码步骤 前言 结构体是一个序列,包含一些被命名的元素,这些被命名的元素称为字段(field),每个字段有一个名字和一个类型. 结构体用得比较多的地方是声明与数据库交互时需要用到的Model类型,以及与JSON数据进行相互转换.(当然,项目中任何需要多种数据结构组合在一起使用的地方,都可以选择用结构体) 代码段1:声明一个待办事项的Model类型: type Todo struct

  • pytorch中的transforms模块实例详解

    pytorch中的transforms模块中包含了很多种对图像数据进行变换的函数,这些都是在我们进行图像数据读入步骤中必不可少的,下面我们讲解几种最常用的函数,详细的内容还请参考pytorch官方文档(放在文末). data_transforms = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms

  • python编程开发时间序列calendar模块示例详解

    目录 calendar模块 设置每周第一天-setfirstweekday 1.默认情况:礼拜一是第一天 2.设置任意一天 是否闰年-isleap 年份间的闰年数-leapdays(y1, y2) 星期几-weekday(year, month, day) monthrange(year, month) 月的日历矩阵-monthcalendar(year, month) 月的日历-prmonth(year, month, w, l) 年的日历-calendar.calendar(year) 格式

  • 独立使用umi的核心插件模块示例详解

    目录 引言 实践 结语 引言 今天我们做一个有趣的尝试,将 umi 的核心插件模块独立出来作为另一个框架的基础架构,这里我们将它称为 konos. 介于 umi 自身的源码的独立拆分,要实现这个功能其实非常的简单.只需要单独使用 @umijs/core 就好. 实践 先看具体实践吧.以下步骤都是常规编写 cli 的一些步骤,我就不做过多的说明,如果你看不懂其中的某些代码,可以评论区留言,或者查看我的其他文章. 新建空白文件夹,mkdir konos 你可以根据你使用的电脑执行对应的命令来新建一个

  • 解决jest处理es模块示例详解

    目录 问题场景 解决方法 问题场景 项目使用jest进行测试时, 当引入外部库是es模块时, jest无法处理导致报错. Test suite failed to run Jest encountered an unexpected token This usually means that you are trying to import a file which Jest cannot parse, e.g. it's not plain JavaScript. By default, if

  • Python深度学习实战PyQt5布局管理项目示例详解

    目录 1. 从绝对定位到布局管理 1.1 什么是布局管理 1.2 Qt 中的布局管理方法 2. 水平布局(Horizontal Layout) 3. 垂直布局(Vertical Layout) 4. 栅格布局(Grid Layout) 5. 表格布局(Form Layout) 6. 嵌套布局 7. 容器布局 布局管理就是管理图形窗口中各个部件的位置和排列.图形窗口中的大量部件也需要通过布局管理,对部件进行整理分组.排列定位,才能使界面整齐有序.美观大方. 1. 从绝对定位到布局管理 1.1 什么

随机推荐