R语言seq()函数的调用方法

看到有很多读者浏览了这篇文章,心里很是开心,为了能够更好地帮助大家,决定再修改一下,帮助大家更好地理解。

--------修改于:2018年4月28日

为了方便大家在开发环境中直接实验测试代码,下面,我将说明和函数的用法全部用英文给出(避免乱码),并加以注释,希望能够对大家有所帮助!

首先,我们来看一个seq()函数应用的实例!

x <- seq(0, 10, by = 0.01)
y <- sin(x)
plot(y)

下面,我们来看函数的主要使用方法!

注意:在本文调用函数时,均采用写出入口参数名的方法,比如:

seq(from = 1, to = 2)

这样函数的调用更加清晰,在调用较多函数时,不会发生混乱和参数匹配错误。

方式一:seq(from, to)

from:生成向量的起点,to:生成向量的终点,默认步长为1(可修改)

a <- seq(from = 1, to = 2)
# [1, 2]

方式二:seq(from, to, by = )

by:向量元素之间的步长

a <- seq(from = 1, to = 3, by = 0.5)
# [1, 1.5, 2, 2.5, 3]

方式三:seq(from, to, length.out = )

length.out:向量中元素数目

a <- seq(from = 1, to = 3, length.out = 5)
# [1, 1.5, 2, 2.5, 3]

方式四:seq(along.with = )

along.with:表示生成的向量为现有一向量元素的索引

x <- c(1.2, 5.2, 6.3, 4.6)
a <- seq(along.with = x)
# [1, 2, 3, 4]

方式五:seq(from)

该方式和方式四功能相似

x <- c(1.2, 5.2, 6.3, 4.6)
a <- seq(from = x)
# [1, 2, 3, 4]

方式6:seq(length.out = )

生成从1开始,步长为1,长度为length.out的向量

a <- seq(length.out = 5)
# [1, 2, 3, 4, 5]

上述几种方式为较为常见的方式,详细的函数说明如下:

Sequence Generation

Description

Generate regular sequences. seq is a standard generic with a default method. seq.int is a primitive which can be much faster but has a few restrictions. seq_along and seq_len are very fast primitives for two common cases.

---------------------------------------------

Usage

seq(...)
## Default S3 method:
seq(from = 1, to = 1, by = ((to - from)/(length.out - 1)),
length.out = NULL, along.with = NULL, ...)
seq.int(from, to, by, length.out, along.with, ...)
seq_along(along.with)

seq_len(length.out)

---------------------------------------------

Arguments

1:...

arguments passed to or from methods.

2:from, to

the starting and (maximal) end values of the sequence. Of length 1 unless just from is supplied as an unnamed argument.

3:by

number: increment of the sequence.

4:length.out

desired length of the sequence. A non-negative number, which for seq and seq.int will be rounded up if fractional.

5:along.with

take the length from the length of this argument.

参考:https://blog.csdn.net/jiluben/article/details/40024607

到此这篇关于R语言seq()函数的调用方法的文章就介绍到这了,更多相关R语言seq()函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • R语言dplyr包之高效数据处理函数(filter、group_by、mutate、summarise)详解

    R语言dplyr包的数据整理.分析函数用法文章连载NO.01 在日常数据处理过程中难免会遇到些难处理的,选取更适合的函数分割.筛选.合并等实在是大快人心! 利用dplyr包中的函数更高效的数据清洗.数据分析,及为后续数据建模创造环境:本篇涉及到的函数为filter.filter_all().filter_if().filter_at().mutate.group_by.select.summarise. 1.数据筛选函数: #可使用filter()函数筛选/查找特定条件的行或者样本 #filte

  • R语言利用plot()函数画图的基本用法

    plot()函数在R语言画图中位置十分重要,现在就对其具体用法做一个总结. 基本用法: plot(x=x轴数据,y=y轴数据,main="标题",sub="子标题",type="线型",xlab="x轴名称",ylab="y轴名称",xlim = c(x轴范围,x轴范围),ylim = c(y轴范围,y轴范围)) 示例代码为: plot(c(1:6),c(1:6),main="test"

  • R语言seq()函数的调用方法

    看到有很多读者浏览了这篇文章,心里很是开心,为了能够更好地帮助大家,决定再修改一下,帮助大家更好地理解. --------修改于:2018年4月28日 为了方便大家在开发环境中直接实验测试代码,下面,我将说明和函数的用法全部用英文给出(避免乱码),并加以注释,希望能够对大家有所帮助! 首先,我们来看一个seq()函数应用的实例! x <- seq(0, 10, by = 0.01) y <- sin(x) plot(y) 下面,我们来看函数的主要使用方法! 注意:在本文调用函数时,均采用写出入

  • 用R语言绘制函数曲线图

    函数曲线图是研究函数的重要工具. R 中 curve() 函数可以绘制函数的图像,代码格式如下: curve(expr, from = NULL, to = NULL, n = 101, add = FALSE, type = "l", xname = "x", xlab = xname, ylab = NULL, log = NULL, xlim = NULL, -) # S3 函数的方法 plot(x, y = 0, to = 1, from = y, xlim

  • R语言实现随机森林的方法示例

    目录 随机森林算法介绍 算法介绍: 决策树生长步骤: 投票过程: 基本思想: 随机森林的优点: 缺点 R语言实现 随机森林模型搭建 1:randomForest()函数用于构建随机森林模型 2:importance()函数用于计算模型变量的重要性 3:MDSplot()函数用于实现随机森林的可视化 4:rfImpute()函数可为存在缺失值的数据集进行插补(随机森林法),得到最优的样本拟合值 5:treesize()函数用于计算随机森林中每棵树的节点个数 随机森林算法介绍 算法介绍: 简单的说,

  • R语言常用两种并行方法之parallel详解

    目录 并行计算 在模拟时什么地方可以用到并行? 怎么在R中看我们可以使用并行? parallel(简单) 由于最近在进行一些论文的模拟,所以尝试了两种并行的方法:parallel与snowfall,这两种方法各有优缺,但还是推荐snowfall,整体较为稳定,不容易因为内存不足或者并行线程过多等原因而报错. 并行计算 并行计算: 简单来讲,就是同时使用多个计算资源来解决一个计算问题,是提高计算机系统计算速度和处理能力的一种有效手段.(参考:并行计算简介) 一个问题被分解成为一系列可以并发执行的离

  • R语言创建矩阵的实现方法

    矩阵 向量vector用于描述一维数据,是R语言中最基础的数据结构形式 矩阵matrix可以描述二维数据,和向量相似,其内部元素可以是实数.复数.字符.逻辑型数据 矩阵包含行和列,分为单位矩阵.对角矩阵和普通矩阵.矩阵可以进行四则运算,以及进行求特征值.特征向量等运算 矩阵matrix使用两个下标来访问元素,A[i,j]表示矩阵A第i行.第j列的元素 矩阵创建--matrix函数 matrix函数创建矩阵,其格式为: matrix(data = NA,nrow = 1,ncol = 1,byro

  • R语言实现LASSO回归的方法

    Lasso回归又称为套索回归,是Robert Tibshirani于1996年提出的一种新的变量选择技术.Lasso是一种收缩估计方法,其基本思想是在回归系数的绝对值之和小于一个常数的约束条件下,使残差平方和最小化,从而能够产生某些严格等于0的回归系数,进一步得到可以解释的模型.R语言中有多个包可以实现Lasso回归,这里使用lars包实现. 1.利用lars函数实现lasso回归并可视化显示 x = as.matrix(data5[, 2:7]) #data5为自己的数据集 y = as.ma

  • R语言boxplot函数深入讲解

    箱线图简介 箱线图又称箱形图或盒须图,该图是由5个特征值绘制而成的图形. 5个特征值是变量的最大值.最小值.中位数.第1四分位数和第3四分位数. 连接两个分位数画出一个箱子,箱子用中位数分割,把两个极值点与箱子用线条连接,即成箱线图. R中绘制箱线图的函数boxplot (1)基本用法 boxplot(x, ...) (2)公式形式的用法 boxplot(formula, data = NULL, ..., subset, na.action = NULL, drop = FALSE, sep

  • R语言处理JSON文件的方法

    JSON文件以人类可读格式将数据存储为文本. Json代表JavaScript Object Notation. R可以使用rjson包读取JSON文件. 安装rjson包 在R语言控制台中,您可以发出以下命令来安装rjson包. install.packages("rjson") 输入数据 通过将以下数据复制到文本编辑器(如记事本)中来创建JSON文件. 使用.json扩展名保存文件,并将文件类型选择为所有文件(*.*). { "ID":["1"

  • R语言常用两种并行方法之snowfall详解

    上一篇博客(R中两种常用并行方法之parallel)中已经介绍了R中常见的一种并行包:parallel,其有着简单便捷等优势,其实缺点也是非常明显,就是很不稳定.很多时候我们将大量的计算任务挂到服务器上进行运行时,更看重的是其稳定性. 这时就要介绍R中的另一个并行利器--snowfall,这也是在平时做模拟时用的最多的一种方法. 针对上篇中的简单例子 首先是一个最简单的并行的例子,这个例子不需要载入任何依赖库.函数.对象等.相对也比较简单: library(snowfall) # 载入snowf

  • Go语言学习函数+结构体+方法+接口

    目录 1. 函数 1.1 函数返回值 同一种类型返回值 带变量名的返回值 函数中的参数传递 函数变量 1.2 匿名函数——没有函数名字的函数 在定义时调用匿名函数 将匿名函数赋值给变量 匿名函数用作回调函数 可变参数——参数数量不固定的函数形式 1.3 闭包 1.4 defer语句 处理运行时发生的错误 1.5 宕机恢复(recover)——防止程序崩溃 2. 结构体 2.1 定义与给结构体赋值 3. 方法 3.1 结构体方法 3.2 接收器 指针接收器 非指针类型接收器 4. 接口 4.1 声

随机推荐