利用R语言绘制时间序列图的操作
数据
GDP.csv文件,存储1879~2019年河南省GDP数据
绘图
# 读取数据, 首先将excel 格式的转化为 csv 格式 再读取 h <- read.table(file = "C:/Users/PYY/Desktop/GDP.csv",sep = ",",header = T) # 转化为时间序列数据 GDP=ts(h$GDP,start = 1978,frequency = 1) # 绘图 plot(GDP)
补充:ts函数
ts() 函数:
通过一向量或者矩阵创建一个一元的或多元的时间序列(time series),为ts型对象。
调用格式:
ts(data = NA, start = 1, end = numeric(0), frequency = 1, deltat = 1, ts.eps = getOption("ts.eps"), class, names)
参数说明:
data:一个向量或者矩阵
start:第一个观测值的时间,为一个数字或者是一个由两个整数构成的向量
end:最后一个观测值的时间,指定方法和start相同
frequency:单位时间内观测值的频数(频率)
deltat:两个观测值间的时间间隔。frequency和deltat必须并且只能给定其中一个
ts.eps:序列之间的误差限,如果序列之间的频率差异小于ts.eps,则认为这些序列的频率相等
class:对象的类型。一元序列的缺省值是“ts”,多元序列的缺省值是c(“mts”,“ts”)
names:一个字符型向量,给出多元序列中每个一元序列的名称,缺省data中每列数据的名称或者Series 1,Series 2, 。。。
举个栗子:
ts(1:26, start=1986) #最简单的形式 Time Series: Start = 1986 End = 2011 Frequency = 1
运行结果:
ts(1:26, frequency = 12, start=c(1986,10)) #frequency = 12时,为月份
运行结果:
以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。
相关推荐
-
R语言 实现list类型数据转换
例如: > a=list(c('232','34'),c('good','bad'),c(1,5)) > a [[1]] [1] "232" "34" [[2]] [1] "good" "bad" [[3]] [1] 1 5 > names(a)=c('d','w','j') > a $d [1] "232" "34" $w [1] "good"
-
R语言验证及协方差的计算公式
协方差的计算公式及R语言进行验证 首先附上协方差公式: 来设5个样本点:(3,9),(2,7),(4,12),(5,15),(6,17) 用R绘制出散点图,大概是这样: 要求这5个点的协方差,首先样本点为5个,n=5,X依次取3,2,4,5,6,Y依次取9,7,12,15,17.X的均值为4,带入公式可得: 不难计算出结果为6.5 现在用R语言进行验证: 已知R语言里边协方差函数为cov(x,y) 我们分别用cov()函数和上述公式来进行仿真结果,代码如下: a <- c(3,2,4,5,6)
-
用R语言绘制函数曲线图
函数曲线图是研究函数的重要工具. R 中 curve() 函数可以绘制函数的图像,代码格式如下: curve(expr, from = NULL, to = NULL, n = 101, add = FALSE, type = "l", xname = "x", xlab = xname, ylab = NULL, log = NULL, xlim = NULL, -) # S3 函数的方法 plot(x, y = 0, to = 1, from = y, xlim
-
R语言时间序列中时间年、月、季、日的处理操作
1.年 pt<-ts(p, freq = 1, start = 2011) 2.月 pt<-ts(p,frequency=12,start=c(2011,1)) frequency=12表示以月份为单位,start 表示时间开始点,start=c(2011,1) 表示从2011年1月开始 3.季度 pt <- ts(p, frequency = 4, start = c(2011, 1)) 4.天 pt<-ts(p,frequency=7,start=c(2011,1)) 用 ts
-
解决R语言 数据不平衡的问题
R语言解决数据不平衡问题 一.项目环境 开发工具:RStudio R:3.5.2 相关包:dplyr.ROSE.DMwR 二.什么是数据不平衡?为什么要处理数据不平衡? 首先我们要知道的第一个问题就是"什么是数据不平衡",从字面意思上进行解释就是数据分布不均匀.在我们做有监督学习的时候,数据中有一个类的比例远大于其他类,或者有一个类的比值远小于其他类时,我们就可以认为这个数据存在数据不平衡问题. 那么这样的一个问题会对我们后续的分析工作带来怎样的影响呢?我举个简单的例子,或许大家就明白
-
R语言学习笔记之lm函数详解
在使用lm函数做一元线性回归时,发现lm(y~x+1)和lm(y~x)的结果是一致的,一直没找到两者之间的区别,经过大神们的讨论和测试,才发现其中的差别,测试如下: ------------------------------------------------------------- ------------------------------------------------------------- 结果可以发现,两者的结果是一样的,并无区别,但是若改为lm(y~x-1)就能看出+1和
-
R语言数据预处理操作——离散化(分箱)
一.项目环境 开发工具:RStudio R:3.5.2 相关包:infotheo,discretization,smbinning,dplyr,sqldf 二.导入数据 # 这里我们使用的是鸢尾花数据集(iris) data(iris) head(iris) Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.
-
利用R语言绘制时间序列图的操作
数据 GDP.csv文件,存储1879~2019年河南省GDP数据 绘图 # 读取数据, 首先将excel 格式的转化为 csv 格式 再读取 h <- read.table(file = "C:/Users/PYY/Desktop/GDP.csv",sep = ",",header = T) # 转化为时间序列数据 GDP=ts(h$GDP,start = 1978,frequency = 1) # 绘图 plot(GDP) 补充:ts函数 ts() 函数:
-
R语言绘制折线图实例分析
折线图是通过在它们之间绘制线段来连接一系列点的图. 这些点在它们的坐标(通常是x坐标)值之一中排序. 折线图通常用于识别数据中的趋势. R语言中的plot()函数用于创建折线图. 语法 在R语言中创建折线图的基本语法是 - plot(v,type,col,xlab,ylab) 以下是所使用的参数的描述 - v是包含数值的向量. 类型采用值"p"仅绘制点,"l"仅绘制线和"o"绘制点和线. xlab是x轴的标签. ylab是y轴的标签. main是
-
R语言绘制Vonoroi图
deldir包绘制Voronoi图 #install.packages("deldir") library(deldir) # data set.seed(1) x <- runif(60) y <- runif(60) # Calculate Voronoi Tesselation and tiles tesselation <- deldir(x, y) tiles <- tile.list(tesselation) plot(tiles, pch = 19
-
使用R语言绘制棒棒糖图火柴杆图教程
目录 使用原生ggplot方法 1)生成数据 使用ggpubr包中的ggdotchart() 参考 使用原生ggplot方法 最容易也是最简单想到的方法是直接使用ggplot2包进行更新,这里需要使用ggplot本身的特性,通过图层叠加的方式,进行最终棒棒糖图的展现.(宽度极窄的柱状图配合散点图即可呈现) 1)生成数据 下面我们的展示均以此份数据为例: library(ggplot2) # Load data data("mtcars") dfm <- mtcars # Conv
-
R语言绘制Vonoroi图的完整代码
deldir包绘制Voronoi图 #install.packages("deldir") library(deldir) # data set.seed(1) x <- runif(60) y <- runif(60) # Calculate Voronoi Tesselation and tiles tesselation <- deldir(x, y) tiles <- tile.list(tesselation) plot(tiles, pch = 19
-
R语言绘制维恩图ggvenn示例详解
目录 引言 1.安装 2.基础用法 3.图形美化 4.提取交集部分并输出 引言 韦恩图,Venn diagram,常用图的一种,用来展示集合之间的特异性和共同性.现在有很多在线的网站都可以绘制,但是R来画也方便,其中ggvenn是基于ggplot2的专门绘制韦恩图的R包. 官方网站:https://github.com/yanlinlin82/ggvenn 1.安装 ggvenn在CRAN上,直接用Install.packages就可以完成安装: > install.packages("g
-
R语言绘制坐标 保存图片的操作
绘制坐标 有时候我们绘制坐标的时候,需要改变坐标轴的定义,我们以日期为横坐标绘制时间序列为例讲解 先列举简单的例子: rnorm(n, mean = 0, sd = 1) n 为产生随机值个数(长度),mean 是平均数, sd 是标准差 . > rnorm(10,1,sd = 2) [1] 1.98984356 -1.93403191 -1.15324772 0.84623524 -0.73123833 -2.77682328 -0.74316683 -0.02913632 -0.800634
-
R语言绘制小提琴图violin plot实现示例
目录 Step1.绘图数据的准备 Step2.绘图数据的读取 Step3.绘图所需package的安装.调用 Step4.绘图 Step5.美化 即便小仙同学决定学习R语言来提升自己作图的“逼格”的时候,心中还有有些疑虑的(嘿嘿,我这么懒,可不愿意做无用功了?).仔细想了想,貌似又找到了两个学习R的理由. 一是R可以帮助我们避免重复劳动,实现“一劳永逸”的终极梦想.尽管非常不想承认这一事实,在科研的过程中,小仙同学制造出了大量“无效”的数据(sign…),但也不得不“绞尽脑汁”.“竭尽全力”地进
-
R语言绘制数据可视化Dumbbell plot哑铃图
目录 Step1. 绘图数据的准备 Step3. 绘图所需package的安装.调用 Step4. 绘图 改变size的大小 调整顺序 又是一年春来到,小仙祝大家在新的一年开开心心.顺顺利利!今天给大家分享的图是哑铃图(Dumbbell plot). Step1. 绘图数据的准备 首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式.作图数据格式如下: Step2. 绘图数据的读取 data <- read.csv("your file path&qu
-
R语言绘制line plot线图示例详解
目录 Step1.绘图数据的准备 Step2.绘图数据的读取 Step3.绘图所需package的安装.调用 Step4.绘图 最近小仙同学在Nature Cell Biology上看到了这样一张图,很常见的折线图画成这个样子——原来很常见的图标类型也可以“焕发新春”! 今天小仙同学就尝试用R复刻一张类似的折线图. Step1. 绘图数据的准备 首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式.数据的格式如下图:一列表示一种变量,最后一列是每一行的行名.
随机推荐
- js实现跨域的几种方法汇总(图片ping、JSONP和CORS)
- dos利用wget.exe让杀毒软件升级更自动化
- Web Services使用多态的方法
- phpmyadmin下载、安装、配置教程
- Android实现画板、写字板功能(附源码下载)
- Android 用adb pull或push 拷贝手机文件到到电脑上,拷贝手机数据库到电脑上,拷贝电脑数据库到手机上
- linux网络编程用到的网络函数详解用和使用示例
- Shell实现读取ini格式配置文件方法
- jQuery学习3:操作元素属性和特性
- 详解Java编程中包package的内容与包对象的规范
- 一定时间滚动的链接菜单效果
- Jquery进度条插件 Progress Bar小问题解决
- ExtJS与PHP、MySQL实现存储的方法
- 系统安全:Win XP SP2 配置及故障解决技巧大揭露
- C#导出Excel的方法
- android 中win10 使用uwp控件实现进度条Marquez效果
- JAVA面试题String产生了几个对象
- 使用python将excel数据导入数据库过程详解
- 如何利用watch帮你重复执行命令
- iOS 纯代码写个侧滑栏功能