java递归实现汉诺塔步骤介绍
汉诺塔的规则是:一共三根柱子,一根柱子从上到下套着有小到大的若干个圆盘,要将所有圆盘按照这个排放顺序移动到第三根柱子上,并且每次只能移动一个圆盘.
可以将整个过程分为三个步骤来看:
第一步:将除最大圆盘外的n-1个圆盘移动辅助柱子上
第二步:将最大的圆盘移动到目标柱子
第三步:将n-1个圆盘从辅助柱子移动到目标柱子
其中第一步又可以拆成一模一样的三步,可以看成一个n-1层的塔要移动到目标柱子,只不过目标柱子换了一个:
第三步也可以拆分成一模一样的三步:
多拆几次就会发现规律:第一步和第三步无论如何拆成更小的汉诺塔,都只是目标柱和辅助柱发生调换,其他部分都是一模一样.所以我们将第一步和第三步进行递归运算就可以解决汉诺塔问题.
static void hanNuo(int n,String A,String B,String C){ if (n==1){ System.out.println("把第"+n+"个从"+A+"移动到"+C); }else { hanNuo(n-1,A,C,B); System.out.println("把第"+n+"个从"+A+"移动到"+C); hanNuo(n-1,B,A,C); } }
每进入一次递归塔的层数减一 ,由于第一步和第三步每拆分一次目标塔和辅助塔就会互换,同理,每进入一次递归也会将两个塔互换,因为第一步拆分目标塔是在塔二和塔三之间循环,所以我们在进入递归时也将传入代表"塔二"和"塔三"的参数互换,同理第三步也将互换代表"塔一"和"塔二"的参数.
方法中的第二步由于第一步已经递归完成,所以可以直接使用打印语句进行输出.
到此这篇关于java递归实现汉诺塔步骤介绍的文章就介绍到这了,更多相关java汉诺塔内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
相关推荐
-
Java递归来实现汉诺塔游戏,注释详细
我们很容易能想到,可以用递归来实现汉诺塔游戏.因为要将n(n>1)个盘子从"源"柱子移到"目标"柱子,我们要先把n-1个盘子从"源"柱子移到"辅助"柱子上,然后把最底下那一个盘子移到目标柱子上,最后把"辅助柱"上的n-1个盘子移动到目标柱子上.n==1时直接移到目标柱上,也是递归的出口. 有了以上思路的铺垫,就可以开始实现代码了. public class HanoiDemo { public sta
-
Java 实现一个汉诺塔实战练习
汉诺塔简介: 我们想要实现的是 让 A柱上的盘子,移动到C柱上 1层汉诺塔 2层汉诺塔 3层汉诺塔详解图 第一步 第二步 第三步 第四步 第五步 第六步 第七步 经过上面的图解,相比大家一定在一定程度了解到汉诺塔的游戏规则,以及怎么去玩. 总之 最终C柱上第一个盘子,是最大,最顶的是最小的,而且在操作过程中,前几步就是为了让三个柱子中最大的盘子移动到C柱上, 然后不断,将它两个柱子中最大盘子往上累加,(盘子从大到小,从下往上摆放) 而且盘子一多,你就会发现过程中间,除了最大的盘子,其余的盘子都会
-
java求解汉诺塔问题示例
思路如下: 要实现3阶汉诺塔的求解步骤,也就是说初始状态时,A上从上到下有三个盘子,分别为1号盘.2号盘和3号盘,其中1号盘最小,3号盘最大:判断剩余盘子个数,如果只有一个盘子就退出迭代,如果有大于一个盘子就继续迭代.代码如下: 复制代码 代码如下: public class HanoiTower { public static void moveDish(int level, char from, char inter, char to) { if (level == 1)
-
java 汉诺塔详解及实现代码
java 汉诺塔详解及实现代码 实现效果图 打印的方法在 moveTheTopOne() 方法中被调用,调用该方法前打印出移动的方向--从X号塔往Y号塔 汉诺塔要求:将第一座塔上的所有盘子,借助第二座塔,全部搬运到第三座塔上. 规则:一次只能搬运一个盘子,不准将大盘子落在小盘子上. 汉诺塔实现代码: public class NewHanoi { public static int tiers = 4; // tiers 层数 private static List<String> pago
-
java递归实现汉诺塔步骤介绍
汉诺塔的规则是:一共三根柱子,一根柱子从上到下套着有小到大的若干个圆盘,要将所有圆盘按照这个排放顺序移动到第三根柱子上,并且每次只能移动一个圆盘. 可以将整个过程分为三个步骤来看: 第一步:将除最大圆盘外的n-1个圆盘移动辅助柱子上 第二步:将最大的圆盘移动到目标柱子 第三步:将n-1个圆盘从辅助柱子移动到目标柱子 其中第一步又可以拆成一模一样的三步,可以看成一个n-1层的塔要移动到目标柱子,只不过目标柱子换了一个: 第三步也可以拆分成一模一样的三步: 多拆几次就会发现规律:第一步和第三步无论如
-
Java与C++分别用递归实现汉诺塔详解
目录 1.汉诺塔介绍 2.解塔步骤 3.C++实现(递归结果及显示步骤) (1)递归结果 (2)显示步骤 4.Java实现(递归结果及显示步骤) (1)递归结果 (2)显示步骤 1.汉诺塔介绍 汉诺塔规则 1.有三根杆子A,B,C.A杆上有若干碟子 2.每次移动一块碟子,小的只能叠在大的上面 3.把所有碟子从A杆全部移到C杆上 经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片: 如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 2.解塔步骤 圆盘:1
-
JAVA数据结构之汉诺塔代码实例
本文实例为大家分享了JAVA数据结构之汉诺塔的具体代码,供大家参考,具体内容如下 package p02.动态链表; import p01.动态数组.Stack; public class LinkedStack<E> implements Stack<E> { private LinkedList<E> list; public LinkedStack(){ list=new LinkedList<>(); } @Override public void
-
C语言递归:汉诺塔问题分析
目录 问题背景 游戏体验 汉诺塔移动次数规律 移动过程的深层解读 汉诺塔问题的三步过程归纳 图解: 发现: 代码实现1 仅打印移动次数 代码实现2 打印移动的具体过程 补充 问题背景 汉诺塔问题源自印度一个古老的传说,印度教的“创造之神”梵天创造世界时做了 3 根金刚石柱,其中的一根柱子上按照从小到大的顺序摞着 64 个黄金圆盘.梵天命令一个叫婆罗门的门徒将所有的圆盘移动到另一个柱子上,移动过程中必须遵守以下规则: 每次只能移动柱子最顶端的一个圆盘:每个柱子上,小圆盘永远要位于大圆盘之上: 游戏
-
C语言递归之汉诺塔和青蛙跳台阶问题
递归就是一个函数执行过程中调用自己,在c语言中有很多关于递归的经典问题,例如:斐波那契数列问题.汉诺塔问题等,在研究递归问题时我们要注意三点: 1.递归的结束条件 2.递归在每次进行过程中,都得离条件越来越近 3.相邻两次递归调用之间的关联关系 汉诺塔问题: 有三根杆子A, B, C.A杆上有N个(N > 1)穿孔圆盘, 盘的尺寸由下到上依次变小.要求按下列规则将所有圆盘移至C杆: 1.每次只能移动一个圆盘: 2.大盘不能叠在小盘上面,可将圆盘临时置于B杆, 也可将从A杆移出的圆盘重新移回A杆,
-
Java SE求解汉诺塔问题的示例代码
目录 1.问题描述 2.画图分析 3.问题讲解 4.代码实现 1.问题描述 汉诺塔问题是一个经典的问题.汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说. 大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘. 大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上. 并且规定,任何时候,在小圆盘上都不能放大圆盘,且在三根柱子之间一次只能移动一个圆盘. 问应该如何操作? 2.画图分析 一个圆盘的情况:移动前 移动后 1个盘子:A直
-
C语言运用函数的递归实现汉诺塔
目录 1.汉诺塔是如何实现的 2.汉诺塔问题画图详解 3.汉诺塔问题代码解释 总结 1.汉诺塔是如何实现的 下面是有三个盘子的示例: 从左到右一次是 A柱 B柱 C柱 A柱:起始位置 B柱:目标位置 C柱:过度位置 汉诺塔为题即是,将A柱上的所有盘子移动到B柱上,且每次只能移动一个盘子,并且小盘子必须在大盘子上面 2.汉诺塔问题画图详解 下面的例子是以A柱为起始位置,B柱为中间位置,C柱为目标位置的 如果初始状态下:A柱只有一个盘子:A->C A柱有两个盘子:A->B A->C B-&g
-
JavaSE递归求解汉诺塔问题的思路与方法
目录 1. 汉诺塔的介绍和玩法 2. 汉诺塔问题的思路 3. 用递归的代码实现 总结 1. 汉诺塔的介绍和玩法 汉诺塔(Tower of Hanoi),又称河内塔,是一个源于印度古老传说的益智玩具. 一共有3根柱子(A.B.C),A柱子由下到上放着由大到小的盘子,我们需要将A柱子上的盘子移到C柱子上,每次只能移动一个盘子,且在任意一次移动中,大盘子都必须处于小盘子下方. 2. 汉诺塔问题的思路 若A柱子上只有1个盘子,只需要移动1步:A->C 若A柱子上有2个盘子,需要移动3步:A->B,A-
-
PHP递归实现汉诺塔问题的方法示例
本文实例讲述了PHP递归实现汉诺塔问题的方法.分享给大家供大家参考,具体如下: 汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘.简而言之,有三根相邻的柱子,标号为A,B,C,A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘,要把所有盘子一个一个移动到柱子B上,
-
Python递归实现汉诺塔算法示例
本文实例讲述了Python递归实现汉诺塔算法.分享给大家供大家参考,具体如下: 最近面试题,面试官让我5分钟实现汉诺塔算法(已然忘记汉诺塔是啥). 痛定思痛,回来查了一下汉诺塔的题目和算法.题干与实现如下: A基座有64个盘子,大在下小在上,每次移动一个盘子,每次都需要大在下小在上,全部移动到B基座,C基座为辅助基座. # -*- coding:utf-8 -*- # 汉诺塔回溯递归实现 # 假设参数中初始杆为a,借助杆为c,阶段终止杆为b # 第一步,a状态借助b移动到c # 第二步,a移动到
随机推荐
- 用htc实现进度条控件
- Android ListView的item背景色设置和item点击无响应的解决方法
- Oracle SQL树形结构查询
- HTML5+Canvas调用手机拍照功能实现图片上传(上)
- js获取form的方法
- 二级域名Cookie问题的解决方法
- Go语言中的switch用法实例分析
- Android实现GPS定位代码实例
- 使用PHP免费发送定时短信的实例
- 解决Windows 10家庭版安装SQL Server 2014出现.net 3.5失败问题
- 轻松掌握Java迭代器模式
- 简单的仿Flash文字动画(兼容Mozilla)
- 利用nginx与ffmpeg搭建流媒体服务器过程详解
- C语言自动生成enum值和名字映射代码
- 原来Java中有两个ArrayList
- Android实现双击TitleBar回顶部的功能示例代码
- Python基于win32ui模块创建弹出式菜单示例
- Java中从键盘输入多个整数的方法
- Python字符串内置函数功能与用法总结
- python格式化输出保留2位小数的实现方法