Python深度强化学习之DQN算法原理详解

目录
  • 1 DQN算法简介
  • 2 DQN算法原理
    • 2.1 经验回放
    • 2.2 目标网络
  • 3 DQN算法伪代码

DQN算法是DeepMind团队提出的一种深度强化学习算法,在许多电动游戏中达到人类玩家甚至超越人类玩家的水准,本文就带领大家了解一下这个算法,论文的链接见下方。

论文:Human-level control through deep reinforcement learning | Nature

代码:后续会将代码上传到Github上...

1 DQN算法简介

Q-learning算法采用一个Q-tabel来记录每个状态下的动作值,当状态空间或动作空间较大时,需要的存储空间也会较大。如果状态空间或动作空间连续,则该算法无法使用。因此,Q-learning算法只能用于解决离散低维状态空间和动作空间类问题。DQN算法的核心就是用一个人工神经网络来代替Q-tabel,即动作价值函数。网络的输入为状态信息,输出为每个动作的价值,因此DQN算法可以用来解决连续状态空间和离散动作空间问题,无法解决连续动作空间类问题。针对连续动作空间类问题,后面blog会慢慢介绍。

2 DQN算法原理

DQN算法是一种off-policy算法,当同时出现异策、自益和函数近似时,无法保证收敛性,容易出现训练不稳定或训练困难等问题。针对这些问题,研究人员主要从以下两个方面进行了改进。

(1)经验回放:将经验(当前状态st、动作at、即时奖励rt+1、下个状态st+1、回合状态done)存放在经验池中,并按照一定的规则采样。

(2)目标网络:修改网络的更新方式,例如不把刚学习到的网络权重马上用于后续的自益过程。

2.1 经验回放

经验回放就是一种让经验概率分布变得稳定的技术,可以提高训练的稳定性。经验回放主要有“存储”和“回放”两大关键步骤:

存储:将经验以(st,at,rt+1,st+1,done)形式存储在经验池中。

回放:按照某种规则从经验池中采样一条或多条经验数据。

从存储的角度来看,经验回放可以分为集中式回放和分布式回放:

  • 集中式回放:智能体在一个环境中运行,把经验统一存储在经验池中。
  • 分布式回放:多个智能体同时在多个环境中运行,并将经验统一存储在经验池中。由于多个智能体同时生成经验,所以能够使用更多资源的同时更快地收集经验。

从采样的角度来看,经验回放可以分为均匀回放和优先回放:

  • 均匀回放:等概率从经验池中采样经验。
  • 优先回放:为经验池中每条经验指定一个优先级,在采样经验时更倾向于选择优先级更高的经验。一般的做法是,如果某条经验(例如经验)的优先级为,那么选取该经验的概率为:

优先回放可以具体参照这篇论文:优先经验回放

经验回放的优点:

1.在训练Q网络时,可以打破数据之间的相关性,使得数据满足独立同分布,从而减小参数更新的方差,提高收敛速度。

2.能够重复使用经验,数据利用率高,对于数据获取困难的情况尤其有用。

经验回放的缺点:

无法应用于回合更新和多步学习算法。但是将经验回放应用于Q学习,就规避了这个缺点。

代码中采用集中式均匀回放,具体如下:

import numpy as np

class ReplayBuffer:
    def __init__(self, state_dim, action_dim, max_size, batch_size):
        self.mem_size = max_size
        self.batch_size = batch_size
        self.mem_cnt = 0

        self.state_memory = np.zeros((self.mem_size, state_dim))
        self.action_memory = np.zeros((self.mem_size, ))
        self.reward_memory = np.zeros((self.mem_size, ))
        self.next_state_memory = np.zeros((self.mem_size, state_dim))
        self.terminal_memory = np.zeros((self.mem_size, ), dtype=np.bool)

    def store_transition(self, state, action, reward, state_, done):
        mem_idx = self.mem_cnt % self.mem_size

        self.state_memory[mem_idx] = state
        self.action_memory[mem_idx] = action
        self.reward_memory[mem_idx] = reward
        self.next_state_memory[mem_idx] = state_
        self.terminal_memory[mem_idx] = done

        self.mem_cnt += 1

    def sample_buffer(self):
        mem_len = min(self.mem_size, self.mem_cnt)

        batch = np.random.choice(mem_len, self.batch_size, replace=True)

        states = self.state_memory[batch]
        actions = self.action_memory[batch]
        rewards = self.reward_memory[batch]
        states_ = self.next_state_memory[batch]
        terminals = self.terminal_memory[batch]

        return states, actions, rewards, states_, terminals

    def ready(self):
        return self.mem_cnt > self.batch_size

2.2 目标网络

对于基于自益的Q学习,动作价值估计和权重有关。当权重变化时,动作价值的估计也会发生变化。在学习的过程中,动作价值试图追逐一个变化的回报,容易出现不稳定的情况。

目标网络是在原有的神经网络之外重新搭建一个结构完全相同的网络。原先的网络称为评估网络,新构建的网络称为目标网络。在学习过程中,使用目标网络进行自益得到回报的评估值,作为学习目标。在更新过程中,只更新评估网络的权重,而不更新目标网络的权重。这样,更新权重时针对的目标不会在每次迭代都发生变化,是一个固定的目标。在更新一定次数后,再将评估网络的权重复制给目标网络,进而进行下一批更新,这样目标网络也能得到更新。由于在目标网络没有变化的一段时间内回报的估计是相对固定的,因此目标网络的引入增加了学习的稳定性。

目标网络的更新方式:

上述在一段时间内固定目标网络,一定次数后将评估网络权重复制给目标网络的更新方式为硬更新(hard update),即

其中表示目标网络权重,表示评估网络权重。

另外一种常用的更新方式为软更新(soft update),即引入一个学习率,将旧的目标网络参数和新的评估网络参数直接做加权平均后的值赋值给目标网络

学习率

3 DQN算法伪代码

DQN算法的实现代码为:

import torch as T
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import numpy as np
from buffer import ReplayBuffer

device = T.device("cuda:0" if T.cuda.is_available() else "cpu")

class DeepQNetwork(nn.Module):
    def __init__(self, alpha, state_dim, action_dim, fc1_dim, fc2_dim):
        super(DeepQNetwork, self).__init__()

        self.fc1 = nn.Linear(state_dim, fc1_dim)
        self.fc2 = nn.Linear(fc1_dim, fc2_dim)
        self.q = nn.Linear(fc2_dim, action_dim)

        self.optimizer = optim.Adam(self.parameters(), lr=alpha)
        self.to(device)

    def forward(self, state):
        x = T.relu(self.fc1(state))
        x = T.relu(self.fc2(x))

        q = self.q(x)

        return q

    def save_checkpoint(self, checkpoint_file):
        T.save(self.state_dict(), checkpoint_file, _use_new_zipfile_serialization=False)

    def load_checkpoint(self, checkpoint_file):
        self.load_state_dict(T.load(checkpoint_file))

class DQN:
    def __init__(self, alpha, state_dim, action_dim, fc1_dim, fc2_dim, ckpt_dir,
                 gamma=0.99, tau=0.005, epsilon=1.0, eps_end=0.01, eps_dec=5e-4,
                 max_size=1000000, batch_size=256):
        self.tau = tau
        self.gamma = gamma
        self.epsilon = epsilon
        self.eps_min = eps_end
        self.eps_dec = eps_dec
        self.batch_size = batch_size
        self.action_space = [i for i in range(action_dim)]
        self.checkpoint_dir = ckpt_dir

        self.q_eval = DeepQNetwork(alpha=alpha, state_dim=state_dim, action_dim=action_dim,
                                   fc1_dim=fc1_dim, fc2_dim=fc2_dim)
        self.q_target = DeepQNetwork(alpha=alpha, state_dim=state_dim, action_dim=action_dim,
                                     fc1_dim=fc1_dim, fc2_dim=fc2_dim)

        self.memory = ReplayBuffer(state_dim=state_dim, action_dim=action_dim,
                                   max_size=max_size, batch_size=batch_size)

        self.update_network_parameters(tau=1.0)

    def update_network_parameters(self, tau=None):
        if tau is None:
            tau = self.tau

        for q_target_params, q_eval_params in zip(self.q_target.parameters(), self.q_eval.parameters()):
            q_target_params.data.copy_(tau * q_eval_params + (1 - tau) * q_target_params)

    def remember(self, state, action, reward, state_, done):
        self.memory.store_transition(state, action, reward, state_, done)

    def choose_action(self, observation, isTrain=True):
        state = T.tensor([observation], dtype=T.float).to(device)
        actions = self.q_eval.forward(state)
        action = T.argmax(actions).item()

        if (np.random.random() < self.epsilon) and isTrain:
            action = np.random.choice(self.action_space)

        return action

    def learn(self):
        if not self.memory.ready():
            return

        states, actions, rewards, next_states, terminals = self.memory.sample_buffer()
        batch_idx = np.arange(self.batch_size)

        states_tensor = T.tensor(states, dtype=T.float).to(device)
        rewards_tensor = T.tensor(rewards, dtype=T.float).to(device)
        next_states_tensor = T.tensor(next_states, dtype=T.float).to(device)
        terminals_tensor = T.tensor(terminals).to(device)

        with T.no_grad():
            q_ = self.q_target.forward(next_states_tensor)
            q_[terminals_tensor] = 0.0
            target = rewards_tensor + self.gamma * T.max(q_, dim=-1)[0]
        q = self.q_eval.forward(states_tensor)[batch_idx, actions]

        loss = F.mse_loss(q, target.detach())
        self.q_eval.optimizer.zero_grad()
        loss.backward()
        self.q_eval.optimizer.step()

        self.update_network_parameters()
        self.epsilon = self.epsilon - self.eps_dec if self.epsilon > self.eps_min else self.eps_min

    def save_models(self, episode):
        self.q_eval.save_checkpoint(self.checkpoint_dir + 'Q_eval/DQN_q_eval_{}.pth'.format(episode))
        print('Saving Q_eval network successfully!')
        self.q_target.save_checkpoint(self.checkpoint_dir + 'Q_target/DQN_Q_target_{}.pth'.format(episode))
        print('Saving Q_target network successfully!')

    def load_models(self, episode):
        self.q_eval.load_checkpoint(self.checkpoint_dir + 'Q_eval/DQN_q_eval_{}.pth'.format(episode))
        print('Loading Q_eval network successfully!')
        self.q_target.load_checkpoint(self.checkpoint_dir + 'Q_target/DQN_Q_target_{}.pth'.format(episode))
        print('Loading Q_target network successfully!')

算法仿真环境是在gym库中的LunarLander-v2环境,因此需要先配置好gym库。进入Aanconda中对应的Python环境中,执行下面的指令

pip install gym

但是,这样安装的gym库只包括少量的内置环境,如算法环境、简单文字游戏环境和经典控制环境,无法使用LunarLander-v2。

训练脚本如下:

import gym
import numpy as np
import argparse
from DQN import DQN
from utils import plot_learning_curve, create_directory

parser = argparse.ArgumentParser()
parser.add_argument('--max_episodes', type=int, default=500)
parser.add_argument('--ckpt_dir', type=str, default='./checkpoints/DQN/')
parser.add_argument('--reward_path', type=str, default='./output_images/avg_reward.png')
parser.add_argument('--epsilon_path', type=str, default='./output_images/epsilon.png')

args = parser.parse_args()

def main():
    env = gym.make('LunarLander-v2')
    agent = DQN(alpha=0.0003, state_dim=env.observation_space.shape[0], action_dim=env.action_space.n,
                fc1_dim=256, fc2_dim=256, ckpt_dir=args.ckpt_dir, gamma=0.99, tau=0.005, epsilon=1.0,
                eps_end=0.05, eps_dec=5e-4, max_size=1000000, batch_size=256)
    create_directory(args.ckpt_dir, sub_dirs=['Q_eval', 'Q_target'])
    total_rewards, avg_rewards, eps_history = [], [], []

    for episode in range(args.max_episodes):
        total_reward = 0
        done = False
        observation = env.reset()
        while not done:
            action = agent.choose_action(observation, isTrain=True)
            observation_, reward, done, info = env.step(action)
            agent.remember(observation, action, reward, observation_, done)
            agent.learn()
            total_reward += reward
            observation = observation_

        total_rewards.append(total_reward)
        avg_reward = np.mean(total_rewards[-100:])
        avg_rewards.append(avg_reward)
        eps_history.append(agent.epsilon)
        print('EP:{} reward:{} avg_reward:{} epsilon:{}'.
              format(episode + 1, total_reward, avg_reward, agent.epsilon))

        if (episode + 1) % 50 == 0:
            agent.save_models(episode + 1)

    episodes = [i for i in range(args.max_episodes)]
    plot_learning_curve(episodes, avg_rewards, 'Reward', 'reward', args.reward_path)
    plot_learning_curve(episodes, eps_history, 'Epsilon', 'epsilon', args.epsilon_path)

if __name__ == '__main__':
    main()

训练时还会用到画图函数和创建文件夹函数,我将他们另外放在一个utils.py脚本中,具体代码如下:

import os
import matplotlib.pyplot as plt

def plot_learning_curve(episodes, records, title, ylabel, figure_file):
    plt.figure()
    plt.plot(episodes, records, linestyle='-', color='r')
    plt.title(title)
    plt.xlabel('episode')
    plt.ylabel(ylabel)

    plt.show()
    plt.savefig(figure_file)

def create_directory(path: str, sub_dirs: list):
    for sub_dir in sub_dirs:
        if os.path.exists(path + sub_dir):
            print(path + sub_dir + ' is already exist!')
        else:
            os.makedirs(path + sub_dir, exist_ok=True)
            print(path + sub_dir + ' create successfully!')

仿真结果如下图所示:

通过平均奖励曲线可以看出,大概迭代到400步左右时算法趋于收敛。 

到此这篇关于Python深度强化学习之DQN算法原理详解的文章就介绍到这了,更多相关Python DQN算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python Pytorch深度学习之神经网络

    目录 一.简介 二.神经网络训练过程 2.通过调用net.parameters()返回模型可训练的参数 3.迭代整个输入 4.调用反向传播 5.计算损失值 6.反向传播梯度 7.更新神经网络参数 总结 一.简介 神经网络可以通过torch.nn包构建,上一节已经对自动梯度有些了解,神经网络是基于自动梯度来定义一些模型.一个nn.Module包括层和一个方法,它会返回输出.例如:数字图片识别的网络: 上图是一个简单的前回馈神经网络,它接收输入,让输入一个接着一个通过一些层,最后给出输出. 二.神经

  • Python Pytorch深度学习之核心小结

    目录 一.Numpy实现网络 二.Pytorch:Tensor 三.自动求导 1.PyTorch:Tensor和auto_grad 总结 Pytorch的核心是两个主要特征: 1.一个n维tensor,类似于numpy,但是tensor可以在GPU上运行 2.搭建和训练神经网络时的自动微分/求导机制 一.Numpy实现网络 在总结Tensor之前,先使用numpy实现网络.numpy提供了一个n维数组对象,以及许多用于操作这些数组的函数. import numpy as np # n是批量大小,

  • Python人工智能深度学习RNN模型结构流程

    目录 1.RNN基础模型 2.LSTM 3.流程结构 1.RNN基础模型 RNN主要特点是,在DNN隐藏层的输出内容会被存储,并且可以作为输入给到下一个神经元. 如下图所示,当"台北"这个词被输入的时候,前面的词有可能是"离开",有可能是"到达",如果把上一次输入的"离开",所得的隐藏层内容,输入给下一层,这样就有可能区分开是"离开台北",还是"到达台北". 如果隐藏层存储的内容并给下次

  • python人工智能深度学习算法优化

    目录 1.SGD 2.SGDM 3.Adam 4.Adagrad 5.RMSProp 6.NAG 1.SGD 随机梯度下降 随机梯度下降和其他的梯度下降主要区别,在于SGD每次只使用一个数据样本,去计算损失函数,求梯度,更新参数.这种方法的计算速度快,但是下降的速度慢,可能会在最低处两边震荡,停留在局部最优. 2.SGDM SGM with Momentum:动量梯度下降 动量梯度下降,在进行参数更新之前,会对之前的梯度信息,进行指数加权平均,然后使用加权平均之后的梯度,来代替原梯度,进行参数的

  • Python人工智能深度学习CNN

    目录 1.CNN概述 2.卷积层 3.池化层 4.全连层 1.CNN概述 CNN的整体思想,就是对图片进行下采样,让一个函数只学一个图的一部分,这样便得到少但是更有效的特征,最后通过全连接神经网络对结果进行输出. 整体架构如下: 输入图片 →卷积:得到特征图(激活图) →ReLU:去除负值 →池化:缩小数据量同时保留最有效特征 (以上步骤可多次进行) →输入全连接神经网络 2.卷积层 CNN-Convolution 卷积核(或者被称为kernel, filter, neuron)是要被学出来的,

  • Python Pytorch深度学习之数据加载和处理

    目录 一.下载安装包 二.下载数据集 三.读取数据集 四.编写一个函数看看图像和landmark 五.数据集类 六.数据可视化 七.数据变换 1.Function_Rescale 2.Function_RandomCrop 3.Function_ToTensor 八.组合转换 九.迭代数据集 总结 一.下载安装包 packages: scikit-image:用于图像测IO和变换 pandas:方便进行csv解析 二.下载数据集 数据集说明:该数据集(我在这)是imagenet数据集标注为fac

  • Python深度强化学习之DQN算法原理详解

    目录 1 DQN算法简介 2 DQN算法原理 2.1 经验回放 2.2 目标网络 3 DQN算法伪代码 DQN算法是DeepMind团队提出的一种深度强化学习算法,在许多电动游戏中达到人类玩家甚至超越人类玩家的水准,本文就带领大家了解一下这个算法,论文的链接见下方. 论文:Human-level control through deep reinforcement learning | Nature 代码:后续会将代码上传到Github上... 1 DQN算法简介 Q-learning算法采用一

  • Python学习之直方图均衡化原理详解

    目录 1.点算子 2.线性灰度变换 3.直方图均衡化 4.代码实战 1.点算子 点算子是两个像素灰度值间的映射关系,属于像素的逐点运算,相邻像素不参与运算.点算子是最简单的图像处理手段,如:亮度调整.对比度调整.颜色变换.直方图均衡化等等. 2.线性灰度变换 线性灰度变换表达为: 其中rk.sk分别为输入.输出点像素灰度值. ▲图2.1 线性灰度变换 当a>1时,输出图像像素灰度范围扩大,图像对比度增强,当a<1时反之.这是因为人眼不易区分相近的灰度值,因此若图像灰度值范围较小,观感上细节不够

  • python函数声明和调用定义及原理详解

    这篇文章主要介绍了python函数声明和调用定义及原理详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 函数是指代码片段,可以重复调用,比如我们前面文章接触到的type()/len()等等都是函数,这些函数是python的内置函数,python底层封装后用于实现某些功能. 一.函数的定义 在Python中,定义一个函数要使用def语句,依次写出函数名.括号.括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回:

  • Python源码学习之PyType_Type和PyBaseObject_Type详解

    PyType_Type和PyBaseObject_Type PyObject和PyTypeObject内容的最后指出下图中对实例对象和类型对象的理解是不完全正确的, 浮点类型对象全局唯一,Python在C语言层面实现过程中将其定义为一个全局静态变量,定义于Object/floatobject.c中,命名为PyFloat_Type. PyTypeObject PyFloat_Type = { PyVarObject_HEAD_INIT(&PyType_Type, 0) "float&quo

  • python函数式编程学习之yield表达式形式详解

    前言 yield的英文单词意思是生产,刚接触Python的时候感到非常困惑,一直没弄明白yield的用法.最近又重新学习了下,所以整理了下面这篇文章,供自己和大家学习参考,下面话不多说了,来一起看看详细的介绍吧. 先来看一个例子 def foo(): print("starting...") while True: res = yield print("res:",res) g = foo() next(g) 在上面的例子里,因为foo函数中有yield关键字,所以

  • MySQL索引背后的数据结构及算法原理详解

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等.为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引,至于哈希索引和全文索引本文暂不讨论. 文章主要内容分为三个部分. 第一部分主要从数据结构及算法理论层面讨论MySQL数据库索引的数理基础. 第二部分结合MySQL数据库中My

  • Python秒算24点实现及原理详解

    什么是24点 我们先来约定下老王和他媳妇玩的24点规则:给定4个任意数字(0-9),然后通过+,-,*,/,将这4个数字计算出24. 小时候玩的都是这个规则,长大了才有根号,才有各种莫名其妙的高级算法,不好玩了,因为我不会. 可能有人会觉得很简单,但是真的简单吗? 比如: 8,3,3,3 7,3,3,3 你能一眼看出来答案吗?好像真的可以-- 大致思路 这样想,将四个数字进行全排列,在他们之间添加运算符号. 运算符我们需要进行排列组合,因为只有四个数字,所以只需要三个运算符,而且算法符可能会重复

  • python列表删除和多重循环退出原理详解

    在学习python的时候,会有一些梗非常不适应,在此列举列表删除和多重循环退出的例子: 列表删除里面的坑 比如我们有一个列表里面有很多相同的值,假如:nums=[1,6,6,3,6,2,10,2,100],我想去掉6,可以这样写: nums=[1,6,6,3,6,2,10,2,100] for n in nums: if n==6: nums.remove(n) nums.sort() print(nums)#输出结果:[1, 2, 2, 3, 6, 10, 100] 排序显示后列表中还有一个6

  • Python3 hashlib密码散列算法原理详解

    1.hashlib密码散列 hashlib模块定义了一个API来访问不同的密码散列算法.要使用一个特定的散列算法,可以用适当的构造器函数或new()来创建一个散列对象.不论使用哪个具体的算法,这些对象都使用相同的API. 1.1 散列算法 由于hashlib有OpenSSL提供"底层支持",所以OpenSSL库提供的所有算法都可用,包括: md5 sha1 sha224 sha256 sha384 sha512 有些算法在所有平台上都可用,而有些则依赖于底层库.这两种算法分别由algo

  • Python参数传递机制传值和传引用原理详解

    首先还是应该科普下函数参数传递机制,传值和传引用是什么意思? 函数参数传递机制问题在本质上是调用函数(过程)和被调用函数(过程)在调用发生时进行通信的方法问题.基本的参数传递机制有两种:值传递和引用传递. 值传递(passl-by-value)过程中,被调函数的形式参数作为被调函数的局部变量处理,即在堆栈中开辟了内存空间以存放由主调函数放进来的实参的值,从而成为了实参的一个副本.值传递的特点是被调函数对形式参数的任何操作都是作为局部变量进行,不会影响主调函数的实参变量的值. 引用传递(pass-

随机推荐