C++学习之线程详解

目录
  • 开篇
  • 线程的状态
  • 多线程的构建
  • 计算时间
    • 一、程序运行时间
    • 二、chrono
  • 共享资源和互斥锁
  • condition_variable
  • 线程池
  • 总结

开篇

多线程是开发中必不可少的,往往我们需要多个任务并行,就需要多线程开发;就好比图像检测和图像结果的处理,这就是一个可闭环的任务,用多线程是可以加速这个任务的;

线程的状态

就绪态:线程能够运行,正在等待处理机资源;

运行态:正在运行,可能有多个线程处于运行态;

阻塞态:线程由于等待某些条件而无法运行,例如IO、锁、互斥量等;

终止态:线程从起始函数返回或被取消;

多线程的构建

有三种方式可以构建多线程,前提是都需要引入pthread.h这个头文件;

1、函数;

2、仿函数;

3、Lambda表达式;

三者的本质都是在调用函数;

// 函数方式
void fun(string s){
    cout<< &s<<endl;
    cout<< "first thread programm"<<s<<endl;
}

int main(){
	string s = "Hell world";
	thread th = thread(fun, s);
	th.join();
}

上面代码为最简单线程的一个构造;

join函数是一个等待线程完成函数,主线程需要等待子线程运行结束才可以结束;还有一个detach的函数,会让线程在后台运行,需要等到程序退出才结束;

计算时间

计算时间在这里介绍两种方式:

一、程序运行时间

long n =0;
clock_t start,finish;
start=clock();
while(n<1000000000)
	n++;
finish=clock();
printf("spend time %f s \n", (double)(finish-start)/CLOCKS_PER_SEC);
printf("spend time %f ms \n", (double)(finish-start)/1000);

这种方式和系统时间无关,一般用来调试时打印时间;

二、chrono

#include <chrono>

//方式三 chrono
std::chrono::system_clock::time_point Cstart = std::chrono::system_clock::now();    //系统时间
//    std::chrono::steady_clock::time_point Cstart = std::chrono::steady_clock::now();    //稳定时间

long n =0 ;
while(n<1000000000)n++;
std::chrono::system_clock::time_point Cend = std::chrono::system_clock::now();    //系统时间

std::chrono::duration<float> spend_time = Cend-Cstart;
cout<<spend_time.count()<<endl;

这个方式用系统时间进行计算,在实际程序中用这个方式;

共享资源和互斥锁

关于互斥锁的概念,引用这篇博主的讲解:文章

引入互斥锁原因:当有两个线程共享一块资源时,容易造成冲突,也就是上个线程还没结束就进行下个线程,举个例子就是读写操作,添加互斥锁可以很好的解决这个冲突问题;

互斥锁是个简单的加锁方法,互斥锁只有两种状态:上锁(lock)和解锁(unlock);

互斥锁特点:

1、原子性:把一个互斥量锁定为一个原子操作,这意味着如果一个线程锁定了一个互斥量,没有其他线程在同一时间可以成功锁定这个互斥量;

2、唯一性:如果一个线程锁定了一个互斥量,在它解除锁定之前,没有其他线程可以锁定这个互斥量;

3、非繁忙等待:如果一个线程已经锁定了一个互斥量,第二个线程又试图去锁定这个互斥量,则第二个线程将被挂起(不占用任何cpu资源),直到第一个线程解除对这个互斥量的锁定为止,第二个线程则被唤醒并继续执行,同时锁定这个互斥量。

互斥锁的使用:

mutex mtx;   //创建互斥锁对象

mtx.lock();
g_pcm_elapseds.push_back(std::make_pair(pcm_data, elapsed));	// 执行语句
mtx.unlock();

condition_variable

condition_variable条件变量可以阻塞(wait)调用的线程直到使用(notify_one或notify_all)通知恢复为止

使用案例:

std::mutex mtx;
std::condition_variable cv;
bool ready = false;

void print_thread_id(int id){
    std::unique_lock<std::mutex> lck(mtx);
    cv.wait(lck,[]{return ready;});
    std::cout<< "thread"<<id <<endl;
}

void go(){
    std::unique_lock<std::mutex> lck(mtx);
    ready = true;
    cv.notify_all();    // 唤醒所有线程
};

int main(){
    std::thread threads[10];
    for(int i=0;i<10;i++){
        threads[i] = std::thread(print_thread_id,i);
    }
    std::cout<< " thread read all done"<<endl;
    go();
    for(auto &th:threads) th.join();
    return 0;
}

线程池

作用:每一个任务都起一个线程,这样的效率是不高的,起一个线程池,哪个线程空闲就来处理任务,这样的结构高效;

实现思想:管理一个任务队列,一个线程队列,然后每次取一个任务队列分配给一个线程去做,循环反复;

这里参考一个Github:地址

其中的ThreadPool.h头文件写的很好,可以直接使用;

总结

线程这部分涉及的知识点比较多,实现起来细节也多。本篇先对其中的概念部分进行总结,实战代码部分可参考我提供的文章进行学习。后续有精力会更新在线程的实战,想要掌握线程还是需要从实战中学习。

到此这篇关于C++学习之线程详解的文章就介绍到这了,更多相关C++ 线程内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++多线程编程超详解

    目录 C++多线程 1. 概念 2. 常用API 1.thread 2.互斥锁mutex 3. 挂起和唤醒 3. 应用场景 3.1 call_once执行一次的函数 3.2 condition_variable条件锁 3.3 future获取线程的计算结果 3.4 promise主线程如何将数据发送数据到其他线程 3.5 future.share()多线程之间共享状态 3.6 线程packaged_task 3.7 时间约束 4. Windows多线程 4.1 Windows创建线程 4.2 W

  • C++11 简单实现线程池的方法

    什么是线程池 线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务.线程池线程都是后台线程.每个线程都使用默认的堆栈大小,以默认的优先级运行,并处于多线程单元中.如果某个线程在托管代码中空闲(如正在等待某个事件),则线程池将插入另一个辅助线程来使所有处理器保持繁忙.如果所有线程池线程都始终保持繁忙,但队列中包含挂起的工作,则线程池将在一段时间后创建另一个辅助线程但线程的数目永远不会超过最大值.超过最大值的线程可以排队,但他们要等到其他线程完成后才启动. 不使用

  • C++11 thread多线程编程创建方式

    目录 1 线程创建与结束 线程的创建方式: 线程的结束方式: 2 互斥锁 <mutex> 头文件介绍 std::mutex 介绍 std::mutex 的成员函数 std::lock_guard std::unique_lock 示例: 原子变量 线程同步通信 线程死锁 1 线程创建与结束 C++11 新标准中引入了四个头文件来支持多线程编程,他们分别是<atomic> ,<thread>,<mutex>,<condition_variable>

  • c++11新特性多线程操作实战

    c++11多线程操作 线程 thread int main() { thread t1(Test1); t1.join(); thread t2(Test2); t2.join(); thread t3 = t1; thread t4(t1); thread t5 = std::move(t1); thread t6(std::move(t1)); return 0; } t3,t4创建失败,因为thread的拷贝构造和赋值运算符重载的原型是: thread(const thread&) = d

  • C++线程中几类锁的详解

    目录 C++线程中的几类锁 互斥锁 条件锁 自旋锁 读写锁 参考博客 总结 C++线程中的几类锁 多线程中的锁主要有五类:互斥锁.条件锁.自旋锁.读写锁.递归锁.一般而言,所得功能与性能成反比.而且我们一般不使用递归锁(C++提供std::recursive_mutex),这里不做介绍. 互斥锁 ==互斥锁用于控制多个线程对它们之间共享资源互斥访问的一个信号量.==也就是说为了避免多个线程在某一时刻同时操作一个共享资源,例如一个全局变量,任何一个线程都要使用初始锁互斥地访问,以避免多个线程同时访

  • C++11用两个线程轮流打印整数的实现方法

    使用C++11标准的的线程语法,用两个线程轮流打印整数,一个线程打印奇数,一个线程打印偶数.可以练习线程的基本操作.线程锁和条件变量等技术.完整代码如下.代码后面附有主要语句的讲解. #include <thread> #include <iostream> #include <mutex> #include <condition_variable> std::mutex data_mutex; std::condition_variable data_va

  • C++学习之线程详解

    目录 开篇 线程的状态 多线程的构建 计算时间 一.程序运行时间 二.chrono 共享资源和互斥锁 condition_variable 线程池 总结 开篇 多线程是开发中必不可少的,往往我们需要多个任务并行,就需要多线程开发:就好比图像检测和图像结果的处理,这就是一个可闭环的任务,用多线程是可以加速这个任务的: 线程的状态 就绪态:线程能够运行,正在等待处理机资源: 运行态:正在运行,可能有多个线程处于运行态: 阻塞态:线程由于等待某些条件而无法运行,例如IO.锁.互斥量等: 终止态:线程从

  • Go语言学习之goroutine详解

    什么是goroutine? Goroutine是建立在线程之上的轻量级的抽象.它允许我们以非常低的代价在同一个地址空间中并行地执行多个函数或者方法.相比于线程,它的创建和销毁的代价要小很多,并且它的调度是独立于线程的.在golang中创建一个goroutine非常简单,使用"go"关键字即可: package mainimport ( "fmt" "time")func learning() { fmt.Println("My firs

  • python学习 流程控制语句详解

    ###################### 分支语句 python3.5 ################ #代码的缩进格式很重要 建议4个空格来控制 #根据逻辑值(True,Flase)判断程序的运行方向 # Ture:表示非空的量(String,tuple元组 .list.set.dictonary),所有非零的数字 # False:0,None .空的量 #逻辑表达式 可以包含 逻辑运算符 and or not if: ##################################

  • Golang与python线程详解及简单实例

    Golang与python线程详解及简单实例 在GO中,开启15个线程,每个线程把全局变量遍历增加100000次,因此预测结果是 15*100000=1500000. var sum int var cccc int var m *sync.Mutex func Count1(i int, ch chan int) { for j := 0; j < 100000; j++ { cccc = cccc + 1 } ch <- cccc } func main() { m = new(sync.

  • java 线程详解及线程与进程的区别

    java  线程详解及线程与进程的区别 1.进程与线程 每个进程都独享一块内存空间,一个应用程序可以同时启动多个进程.比如IE浏览器,打开一个Ie浏览器就相当于启动了一个进程. 线程指进程中的一个执行流程,一个进程可以包含多个线程. 每个进程都需要操作系统为其分配独立的内存空间,而同一个进程中的多个线程共享这块空间,即共享内存等资源. 每次调用java.exe的时候,操作系统都会启动一个Java虚拟机进程,当启动Java虚拟机进程时候,Java虚拟机都会创建一个主线程,该线程会从程序入口main

  • Spring框架学习之AOP详解

    一.概念 1.面向切面编程(方面),利用 AOP 可以对业务逻辑的各个部分进行隔离,从而使得业务逻辑各部分之间的耦合度降低,提高程序的可重用性,同时提高了开发的效率. 2.通俗描述:不通过修改源代码方式,在主干功能里面添加新功能 二.底层原理:动态代理 有两种情况动态代理 2.1 有接口, JDK 动态代理 1.被代理的对象 public class UserDaoImpl implements UserDao { @Override public int add(int a, int b) {

  • Java Spring5学习之JdbcTemplate详解

    一.JdbcTemplate Spring 框架对 JDBC 进行封装,使用 JdbcTemplate 方便实现对数据库操作 二.实战 2.1 引入依赖 <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>8.0.24</version> </dependency> <!-

  • Java多线程之Interrupt中断线程详解

    一.测试代码 https://gitee.com/zture/spring-test/blob/master/multithreading/src/test/java/cn/diswares/blog/InterruptTests.java 二.测试 为了方便理解简介中 interrupt 的概念, 写个 DEMO 测试一下 /** * 调用 interrupt 并不会影响线程正常运行 */ @Test public void testInvokeInterrupt() throws Inter

  • 汇编语言指令集学习条件转移指令详解

    目录 1.根据单个条件标志的设置情况转移 2. 比较两个无符号数,并根据比较的结果转移 3. 比较两个带符号数,并根据比较的结果转移 4.测试CX或ECX的值为0则转移指令 条件转移指令较多,容易混淆,在此记录一下便于日后使用 1.根据单个条件标志的设置情况转移 指令 英文 含义 格式 测试条件 JZ/JE jump if zero/equal 结果为零/相等则转移 JZ/JE OPR ZF=1 JNZ/JNE jump if not zero/equal 结果不为零/不相等则转移 JNZ/JN

  • Python深度学习线性代数示例详解

    目录 标量 向量 长度.维度和形状 矩阵 张量 张量算法的基本性质 降维 点积 矩阵-矩阵乘法 范数 标量 标量由普通小写字母表示(例如,x.y和z).我们用 R \mathbb{R} R表示所有(连续)实数标量的空间. 标量由只有一个元素的张量表示.下面代码,我们实例化了两个标量,并使用它们执行一些熟悉的算数运算,即加法.乘法.除法和指数. import torch x = torch.tensor([3.0]) y = torch.tensor([2.0]) x + y, x * y, x

随机推荐