超详细讲解python正则表达式

目录
  • 正则表达式
    • 1.1 正则表达式字符串
      • 1.1.1 元字符
      • 1.1.2 字符转义
      • 1.1.3 开始与结束字符
    • 1.2 字符类
      • 1.2.1 定义字符类
      • 1.2.2 字符串取反
      • 1.2.3 区间
      • 1.2.4 预定义字符类
    • 1.3 量词
      • 1.3.1 量词的使用
      • 1.3.2 贪婪量词和懒惰量词
    • 1.4 分组
      • 1.4.1 分组的使用
      • 1.4.2 分组命名
      • 1.4.3 反向引用分组
      • 1.4.4 非捕获分组
    • 1.5 re模块
      • 1.5.1 search()和match()函数
      • 1.5.2 findall()和finditer()函数
      • 1.5.3 字符串分割
      • 1.5.4 字符串替换

正则表达式

  正则表达式(Regular Expression,在代码中常简写为regexregexpREre)是预先定义好的一个“规则字符率”,通过这个“规则字符串”可以匹配、查找和替换那些符合“规则”的文本。
  虽然文本的查找和替換功能可通过字符串提供的方法实现,但是实现起来极为困难,而且运算效率也很低。而使用正则表达式实现这些功能会比较简单,而且效率很高,唯一的困难之处在于编写合适的正则表达式。
  Python 中正则表达式应用非常广泛,如数据挖掘、数据分析、网络爬虫、输入有效性验证等,Python 也提供了利用正则表达式实现文本的匹配、查找和替换等操作的 re 模块。

1.1 正则表达式字符串

正则表达式是一种字符串,正则表达式字符串是由普通字符和元字符组成的。
1)普通字符

普通字符是按照字符字面意义表示的字符。

2)元字符

元字符是预先定义好的一些特定字符,比如\w\.都属于元字符。

1.1.1 元字符

元字符(Metacharacters)是用来描述其他字符的特殊字符,它由基本元字符和普通字符构成。基本元字符是构成元字符的组成要素。基本元字符主要有14个,具体如下图所示。

字符 说明
\ 转义符,表示转义
. 表示任意一个字符
+ 表示重复1次或多次
* 表示重复0次或多次
? 表示重复0次或1次
| 选择符号,表示“或关系”,例如:A | B 表示匹配A或B
{} 定义量词
[] 定义字符类
() 定义分组
^ 可以表示取反,或匹配一行的开始
$ 匹配一行的结束

上面表格中\w+ 是元字符,它由两个基本元字符(\+)和一个普通字符 w构成。另外,还有.元字符,它由两个基本元字符\,构成。
学习正则表达式某种意义上讲就是在学习元字符的使用,元字符是正则表达式的重点也是难点。下面会分门别类地介绍元字符的具体使用。

1.1.2 字符转义

在正则表达式中有时也需要字符转义,比如 w字符不表示英文字母 w,而是表示任何语言的单词字符(如英文字母、亚洲文字等)、数字和下画线等内容时,需要在w 字母前加上反斜杠\。反斜杠\也是基本元字符,与 Python 语言中的字符转义是类似的。不仅可以对普通字符进行转义,还可以对基本元字符进行转义。如上面的表格,其中点.字符是希望按照点.的字面意义使用,作为.com域名的一部分,而不是作为.基本元字符使用,所以需要加反斜杠\进行转义,即\.才是表示点.的字面意义。

1.1.3 开始与结束字符

本节通过一个示例介绍在 Python中如何使用正则表达式。
在1.1.1 节介绍基本元字符时介绍了^$,它们可以用于匹配一行字符串的开始和结束。当以^开始时,要求一行字符串的开始位置匹配:当以$结束时,要求一行字符串的结位置匹配。所以正则表达式\w+@jiakecong.com^w+@jiakecong.com$是不同的。
示例代码如下:

import re

p1 = r'\w+@jiakecong\.com'
p2 = r'^\w+@jiakecong\.com$'
text = "Tony 's email is tony_guan111@jiakecong.com"
m = re.search(p1, text)
print(m)

m = re.search(p2, text)
print(m)

email = "tony_guan111@jiakecong.com"
m = re.search(p2, email)
print(m)

输出结果如下:

<re.Match object; span=(17, 43), match='tony_guan111@jiakecong.com'>
None
<re.Match object; span=(0, 26), match='tony_guan111@jiakecong.com'>

1.2 字符类

在正则表达式中可以使用字符类,一个字符类定义一组字符,其中的任一一个字符出现在输入字符串中即匹配成功。注意每次匹配只能匹配字符类中的一个字符。

1.2.1 定义字符类

定义一个普通的字符类需要使用[]元字符类。例如想在输入字符串中匹配Javajava,可以使用正则表达式[Jj]ava,示例代码如下:

p = r'[Jj]ava'
m = re.search(p, 'I like Java and Python')
print(m)

m = re.search(p, 'I like JAVA and Python')
print(m)

m = re.search(p, 'I like java and python')
print(m)

输出结果如下:

<re.Match object; span=(7, 11), match='Java'>
None
<re.Match object; span=(7, 11), match='java'>

上述代码中除了JAVA不匹配正则表达式[Jj]ava,其他都匹配

1.2.2 字符串取反

在正则表达式中指定不想出现的字符,可以在字符类前加^符号。示例代码如下:

import re

p = r'[^0123456789]'

m = re.search(p, '1000')
print(m)

m = re.search(p, 'python')
print(m)

上述代码定义的正则表达式[^0123456789],它表示输入字符串中出现非0-9数字即匹配,即出现在[0123456789]以外的任意一字符即匹配

1.2.3 区间

上面示例中的[^0123456789]正则表达式,事实上有些麻烦,这种连续的数字可以使用区间表示。区间是用连字符-表示的,例如[0123456789]采用区间表示为[0-9][^0123456789]采用区间表示为[^0-9]。区间还可以表示连续的英文字母字符类,例如[a-z]表示所有小写字母字符类,[A-Z]表示所有大写字母字符类。
另外,也可以表示多个不同区间,[A-Za-z0-9]表示所有字母和数字字符类,[0-25-7]表示0、1、2、5、6、7几个字符组成的字符类。
示例代码如下:

import re

m = re.search('[A-Za-z0-9]', 'A10.3')
print(m)

m = re.search(r'[0-25-7]', 'A3489C')
print(m)

输出结果如下:

<re.Match object; span=(0, 1), match='A'>
None

1.2.4 预定义字符类

有些字符类很常用,例如[0-9]等。为了书写方便,正则表达式提供了预定义的字符类,例如预定义字符类\d等价于[0-9]字符类。预定义字符类如下图所示

字符 说明
. 匹配任意一个字符
\ 匹配反斜杠\字符
\n 匹配换行
\r 匹配回车
\f 匹配一个换页符
\t 匹配一个水平制表符
\v 匹配一个垂直制表符
\s 匹配一个空格符,等价于[\t\n\r\f\v]
\S 匹配一个非空格符,等价于[^\s]
\d 匹配一个数字字符,等价于[0-9]
\D 匹配一个非数字字符,等价[^0-9]
\w 匹配任意语言的单词字符、数字和下划线'_'等字符,如果正则表达式标志设置为ASCII,则只匹配[a-zA-Z0-9]
\W 等价于[^\w]

示例代码如下:

import re

p = r'\D'
m = re.search(p, 'assss')
print(m)

m = re.search(p, '1000')
print(m)

text = '你们好hello'
m = re.search(r'\w', text)
print(m)

输出结果如下:

<re.Match object; span=(0, 1), match='a'>
None
<re.Match object; span=(0, 1), match='你'>

上述代码正则表达式\D就等于[^0123456789]。另一个正则表达式\w表示任意字符,会在text字符串中查找匹配字符,找到的结果是字符。

1.3 量词

之前学习的正则表达式元字符只能匹配显示一次字符或字符串,如果想匹配显示多次字符或字符串可以使用量词

1.3.1 量词的使用

量词表示字符或字符串重复的次数,正则表达式中的量词如下表:

字符 说明
? 出现0或1次
* 出现0或多次
+ 出现1或多次
{n} 出现n次
{n,m} 至少出现n次,但不超过m次
{n,} 至少出现n次

量词的使用示例代码如下:

import re

m = re.search(r'\d?', '87654321')
print(m)

m = re.search(r'\d?', 'ABC')
print(m)

m = re.search(r'\d*', '87654321')
print(m)

m = re.search(r'\d*', 'ABC')
print(m)

m = re.search(r'\d+', '87654321')
print(m)

m = re.search(r'\d+', 'ABC')
print(m)

m = re.search(r'\d{8}', '87654321')
print(m)

m = re.search(r'\d{8}', 'ABC')
print(m)

m = re.search(r'\d{7,8}', '87654321')
print(m)

m = re.search(r'\d{9, }', '87654321')
print(m)

输出结果如下:

<re.Match object; span=(0, 1), match='8'>
<re.Match object; span=(0, 0), match=''>
<re.Match object; span=(0, 8), match='87654321'>
<re.Match object; span=(0, 0), match=''>
<re.Match object; span=(0, 8), match='87654321'>
None
<re.Match object; span=(0, 8), match='87654321'>
None
<re.Match object; span=(0, 8), match='87654321'>
None

1.3.2 贪婪量词和懒惰量词

量词还可以细分为贪婪量词和懒惰量词,贪婪量词会尽可能多地匹配字符,懒惰量词会尽可能少地匹配字符。大多数计算机语言的正则表达式量词默认是贪婪的,要想使用懒惰量词在量词后面加?即可
示例代码如下:

import re

m = re.search(r'\d{5,8}', '87654321')
print(m)

m = re.search(r'\d{5,8}?', '87654321')
print(m)

输出结果如下:

<re.Match object; span=(0, 8), match='87654321'>
<re.Match object; span=(0, 5), match='87654'>

上述代码使用了贪婪量词{5,8},输入字符串87654321是长度8位的数字字符串,尽可能多地匹配字符结果是87654321。代码使用懒惰量词{5,8}?,输入字符串87654321是长度8位的数字字符串,尽可能少的匹配字符结果是87654

1.4 分组

在此之前学习的量词只能重复显示一个字符,如果想让一个字符串作为整体使用量词,可将整个字符串放到一对小括号中,这就是分组(也称子表达式)

1.4.1 分组的使用

对正则表达式进行分组不经可以对一个字符串整体使用量词,还可以在正则表达式中引用已经存在的分组。示例代码如下:

import re

p = r'(121){2}'
m = re.search(p, '121121abcabc')
print(m)
print(m.group())  # 返回匹配的字符串
print(m.group(1))  # 返回第一组内容

p = r'(\d{3,4})-(\d{7,8})'
m = re.search(p, '010-87654321')
print(m)
print(m.group())  # 返回匹配字符串
print(m.groups())  # 获得所有组内容

输出结果如下:

<re.Match object; span=(0, 6), match='121121'>
121121
121
<re.Match object; span=(0, 12), match='010-87654321'>
010-87654321
('010', '87654321')

上述代码定义的正则表达式(121)是将121字符串分为一组,(121){2}表示对121重复两次,即121121。代码调用match对象的group()方法返回匹配的字符串,group()方法语法如下:

match.group([group1, ...])

其中参数group1是组编号,在正则表达式中组编号是从1开始的,所以代码正则表达式m.group(1)表示返回第一组内容
代码 r'(\d{3,4})-(\d{7,8})'正则表达式可以用来验证固定电话号码,在-之前是3-4位的区号,-之后是7-8位的电话号码。在该正则表达式中有两个分组。代码m.groups()方法是返回所有分组,返回值是一个元组

1.4.2 分组命名

在Python程序中访问分组时,除了可以通过组编号进行访问,还可以通过组名进行访问,前提是要在正则表达式中为组命名。组命名通过在组开头添加?P<分组名>实现。
示例代码如下:

import re

p = r'(?P<area_code>\d{3,4})-(?P<phone_code>\d{7,8})'
m = re.search(p, '010-87654321')
print(m)
print(m.group())  # 返回匹配字符串
print(m.groups())  # 获得所有组内容

# 通过组编号返回组内容
print(m.group(1))
print(m.group(2))

# 通过组名返回组内容
print(m.group('area_code'))
print(m.group('phone_code'))

输出结果如下:

<re.Match object; span=(0, 12), match='010-87654321'>
010-87654321
('010', '87654321')
010
87654321
010
87654321

上述代码其实和1.4.1的代码是一样的,只是给正则表达式命名了,以后就可以通过组编号或组名字来访问

1.4.3 反向引用分组

除了可以在程序diamante中访问正则表达式匹配之后的分组内容,还可以再正则表达式内部引用之前的分组。
下面通过示例熟悉以下反向引用分组。假设由于工作需要想解析一段XML代码,需要找到某一个开始标签和结束标签,示例代码如下:

import re

p = r'<([\w]+)>.*</([\w]+)>'
m = re.search(p, '<a>abc</a>')
print(m)

p = r'<([\w]+)>.*</([\w]+)>'
m = re.search(p, '<a>abc</b>')
print(m)

输出结果如下:

<re.Match object; span=(0, 10), match='<a>abc</a>'>
<re.Match object; span=(0, 10), match='<a>abc</b>'>

上述代码的正则表达式分成了两组,两组内容完全一样。但是测试结果发现他们都是匹配的,但是<a>abc</b>明显不是有效的XML代码,因为开始标签和结束标签应该是一致的。可见代码r'<([\w]+)>.*</([\w]+)>'并不能保证开始标签和结束标签是一致的。为了解决此问题,可以引用反向引用,即让第二组反向引用第一组。在正则表达式中反向引用语法是\组编号,组编号是从1开始的。示例代码如下:

import re

p = r'<([\w]+)>.*</\1>'  # 使用了反向引用  ①
m = re.search(p, '<a>abc</a>')
print(m)  # 匹配

m = re.search(p, '<a>abc</b>')
print(m)  # 不匹配

输出结果如下:

<re.Match object; span=(0, 10), match='<a>abc</a>'>
None

上述代码第①行时定义正则表达式,其中\1是反向引用第一个组,从运行结果可见字符串<a>abc</a>是匹配的,而<a>abc</b>字符串不匹配

1.4.4 非捕获分组

前面介绍的分组称为捕获分组。捕获分组的匹配子表达式结果被暂时保存到内存中,以备表达式或其他程序引用,这个过程称为"捕获",捕获结果可以通过组编号或组名进行引用。但是有时并不想引用子表达式的匹配结果,不想捕获匹配结果,只是将小括号作为一个整体进行匹配,此时可以使用非捕获分组,在组开头使用?,可以实现非捕获分组
示例代码如下:

import re

s = 'img1.jpg,img2.jpg,img3.bmp'

# 捕获分组
p = r'\w+(\.jpg)'
mlist = re.findall(p, s)       ①
print(mlist)

# 非捕获分组
p = r'\w+(?:\.jpg)'
mlist = re.findall(p, s)       ②
print(mlist)

输出结果如下:

['.jpg', '.jpg']
['img1.jpg', 'img2.jpg']

上述代码实现了从字符串中查找.jpg结尾的文本,其中代码第①行和第②行的正则表达式区别在于前者是捕获分组,后者是非捕获分组。捕获分组将括号中的内容作为子表达式进行捕获匹配,将匹配的子表达式(即组的内容)返回,结果是['.jpg','.jpg']。而非捕获分组将括号中的内容作为普通的正则表达式字符串进行整体匹配,即找到.jpg结尾的文本,所以最后结果是['img1.jpg', 'img2.jpg']

1.5 re模块

rePython内置的正则表达式模块,前面虽然使用过re模块一些函数,但还有很多重要函数没有详细介绍,这一节将详细介绍这些函数

1.5.1 search()和match()函数

search()match()函数非常相似,它们的区别如下所示

search():在输入字符串中查找,返回第一个匹配内容,如果找到一个则match对象,如果没有找到返回Nonematch():在输入字符串开始处查找匹配内容,如果找到一个则match对象,如果没有找到返回None

示例代码如下:

import re

p = r'\w+@jiakecong\.com'

text = "Tony 's email is tony_guan111@jiakecong.com"  ①
m = re.search(p, text)
print(m)

m = re.match(p, text)
print(m)

email = 'tony_guan111@jiakecong.com'        ②
m = re.search(p, email)
print(m)

m = re.match(p, email)
print(m)

# match对象几个方法
print('match对象几个方法:')                      ③
print(m.group())
print(m.start())
print(m.end())
print(m.span())

输出结果如下:

<re.Match object; span=(17, 43), match='tony_guan111@jiakecong.com'>
None
<re.Match object; span=(0, 26), match='tony_guan111@jiakecong.com'>
<re.Match object; span=(0, 26), match='tony_guan111@jiakecong.com'>
match对象几个方法:
tony_guan111@jiakecong.com
0
26
(0, 26)

上述代码第①行输入字符串开头不是emailsearch()函数可以匹配成功,而match()函数却匹配失败。代码第②行输入字符串开头就是email格式的邮箱,所以search()match()函数都可以匹配成功
searchmatch()函数如果匹配成功都返回match对象。match对象有一些常用方法,见代码第③行。其中group()方法返回匹配的子字符串;start()方法返回子字符串的开始索引;end()方法返回子字符串的结束索引;span方法返回子字符串的跨度,它是一个二元素的元组。

1.5.2 findall()和finditer()函数

findall()finditer()函数非常相似,它们的区别如下所示

  • findall():在输入字符串中查找所有匹配内容,如果匹配成功,则返回match列表对象,如果匹配失败则返回None
  • finditer():在输入字符串中查找所有匹配内容,如果匹配成功,则返回容纳match的可迭代对象,通过迭代对象每次可以返回一个match对象,如果匹配失败则返回None

示例代码如下:

import re

p = r'[Jj]ava'
text = 'I like Java and java'

match_list = re.findall(p, text)       ①
print(match_list)

match_iter = re.finditer(p, text)     ②
for m in match_iter:                    ③
    print(m.group())

输出结果如下:

['Java', 'java']
Java
java

上述代码第①行的findall()函数返回match列表对象。代码第②行的finditer()函数返回可迭代对象。代码第③行通过for循环遍历可迭代对象

1.5.3 字符串分割

字符串分割使用split函数,该函数按照匹配的子字符串进行字符串分割,返回字符串列表对象

re.split(pattern, string, maxsplit=0, flags=0)

其中参数pattern是正则表达式;参数string是要分割的字符串;参数maxsplit是最大分割次数,maxsplit默认值为零,表示分割次数没有限制;参数flags是编译标志
示例代码如下:

import re

p = r'\d+'
text = 'AB12CD34EF'

clist = re.split(p, text)   ①
print(clist)

clist = re.split(p, text, maxsplit=1)    ②
print(clist)

clist = re.split(p, text, maxsplit=2)    ③
print(clist)

输出结果如下:

['AB', 'CD', 'EF']
['AB', 'CD34EF']
['AB', 'CD', 'EF']

上述代码调用split()函数通过数字对AB12CD34EF字符串进行分割,\d+正则表达式匹配一到多个数字。

  • 代码第①行split()函数中参数maxsplitflags是默认的,分割的次数没有限制,分割结果是['AB', 'CD', 'EF']列表
  • 代码第②行split()函数指定maxsplit为1,分割结果是['AB', 'CD34EF']列表,列表元素的个数是maxsplit+1
  • 代码第③行split()函数指定maxsplit为2,2是最大可能的分割次数,因此maxsplit≥2maxsplit=0是一样的。

1.5.4 字符串替换

字符串替换使用sub()函数,该函数用于替换匹配的子字符串,返回值是替换之后的字符串。

re.sub(pattern, rep1, string, count=0, flags=0)

其中参数pattern是正则表达式;参数rep1是替换字符串;参数string是要提供的字符串;参数count是要替换的最大数量,默认值为零,表示替换数量没有限制;参数flags是编译标志
示例代码如下:

import re

p = r'\d+'
text = 'AB12CD34EF'

replace_text = re.sub(p, ' ', text)      ①
print(replace_text)

replace_text = re.sub(p, ' ', text, count=1)     ②
print(replace_text)

replace_text = re.sub(p, ' ', text, count=2)     ③
print(replace_text)

输出结果如下:

AB CD EF
AB CD34EF
AB CD EF

上述代码调用sub()函数替换AB12CD34EF字符串中的数字。

  • 代码第①行sub()函数中参数countflags都是默认的,替换的最大数量没有限制,替换结果是AB CD EF
  • 代码第②行sub()函数指定count为1,替换结果是AB CD34EF
  • 代码第③行sub()函数指定count为2,2是最大可能的替换次数,因此count≥2count=0是一样的。

到此这篇关于超详细讲解python正则表达式的文章就介绍到这了,更多相关python正则表达式内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 浅谈Python中的正则表达式

    Python里的正则表达式 Python里的正则表达式,无需下载外部模块,只需要引入自带模块:re: import re 官方re模块文档: https://docs.python.org/zh-cn/3.9/library/re.html 同时,Python的正则表达式是PCRE标准的,相较于广泛应用在Unix上的POSIX标准,还是有些区别的(主要是简化) 基本方法 观察re源码,其主要的接口方法有: match(-):从字符串的起始位置匹配一个模式,如果无法匹配成功,则match()就返回

  • 如何利用python正则表达式匹配版本信息

    问题描述: 用正则表达式提取文本中的版本号信息,比如说:10.1.1 9.5 10.10.11 并实现在文本中(.txt)读入,写出到文本(.txt) 首先构造正则表达式: pattern=Vpat="I.(I.)*I" 构造正则表达式:r'\d+\.(?:\d+\.)*\d+' import re pattern = r'\d+\.(?:\d+\.)*\d+' f=open("F:\\xxxxxx\\banners.txt","r") data

  • python re模块和正则表达式

    一.re模块和正则表达式 先来看一个例子:https://reg.jd.com/reg/person?ReturnUrl=https%3A//www.jd.com/ 这是京东的注册页面,打开页面我们就看到这些要求输入个人信息的提示.假如我们随意的在手机号码这一栏输入一个11111111111,它会提示我们格式有误.这个功能是怎么实现的呢?假如现在你用python写一段代码,类似: phone_number = input('please input your phone number : ')

  • python通过re正则表达式切割中英文的操作

    我就废话不多说了,大家还是直接看代码吧~ import re s = 'alibaba阿里巴巴' # 待分割字符串 en_letter = '[\u0041-\u005a|\u0061-\u007a]+' # 大小写英文字母 zh_char = '[\u4e00-\u9fa5]+' # 中文字符 print(re.findall(zh_char,s) + re.findall(en_letter,s)) # 输出: ['阿里巴巴', 'alibaba'] 范围 说明 \u4e00-\u9fa5

  • python正则表达式re.match()匹配多个字符方法的实现

    1.  *表示匹配任意多个字符   \d*表示匹配任意多个数字字符 import re text = "123h1ello world" text1 = "123Hello world456" text2 = "hello world" res = re.match("\d*", text) res1 = re.match("\d*", text1) res2 = re.match("\d*&qu

  • Python正则表达式的应用详解

    目录 正则表达式的定义 Python对正则表达式的支持 示例 例1:验证输入的用户名是否有效,用户名由长度为6到20的字母.数字.下划线组成 例2:从字符串中找到与正则表达式匹配的部分 例3:从网页上获取新闻的标题和链接 例4:不良内容过滤 例5:用正则表达式拆分字符串 总结 正则表达式的定义 在编写处理字符串的程时,经常会遇到在一段文本中查找符合某些规则的字符串的需求,正则表达式就是用于描述这些规则的工具,换句话说,我们可以使用正则表达式来定义字符串的匹配模式,即如何检查一个字符串是否有跟某种

  • Python验证的50个常见正则表达式

    什么是正则表达式? 正则表达式(Regular Expression)通常被用来检索.替换那些符合某个模式(规则)的文本. 此处的Regular即是规则.规律的意思,Regular Expression即"描述某种规则的表达式"之意. 本文收集了一些常见的正则表达式用法,方便大家查询取用,并在最后附了详细的正则表达式语法手册. 案例包括:「邮箱.身份证号.手机号码.固定电话.域名.IP地址.日期.邮编.密码.中文字符.数字.字符串」 Python如何支持正则? 我用的是python来实

  • Python正则表达式保姆式教学详细教程

    目录 一.re模块 1.导入re模块 2.findall()的语法: 二.正则表达式 1.普通字符 2.元字符 (二)正则的使用 1.编译正则 2.正则对象的使用方法 3.Match object 的操作方法 4.re模块的函数 正则作为处理字符串的一个实用工具,在Python中经常会用到,比如爬虫爬取数据时常用正则来检索字符串等等.正则表达式已经内嵌在Python中,通过导入re模块就可以使用,作为刚学Python的新手大多数都听说"正则"这个术语. 今天来给大家分享一份关于比较详细

  • 一篇文章带你了解python正则表达式的正确用法

    目录 正则表达式的介绍 re模块 匹配单个字符 1.匹配任意一个字符 2.匹配[ ]中列举的字符 3.\d匹配数字,即0-9 4.\D匹配非数字,即不是数字 5.\s匹配空白,即 空格,tab键 6.\S匹配非空白 7.\w匹配非特殊字符,即a-z.A-Z.0-9._.汉字 8.\W匹配特殊字符,即非字母.非数字.非汉字 总结 正则表达式的介绍 1)在实际开发过程中经常会有查找符合某些复杂规则的字符串的需要,比如:邮箱.手机号码等,这时候想匹配或者查找符合某些规则的字符串就可以使用正则表达式了.

  • 超详细讲解python正则表达式

    目录 正则表达式 1.1 正则表达式字符串 1.1.1 元字符 1.1.2 字符转义 1.1.3 开始与结束字符 1.2 字符类 1.2.1 定义字符类 1.2.2 字符串取反 1.2.3 区间 1.2.4 预定义字符类 1.3 量词 1.3.1 量词的使用 1.3.2 贪婪量词和懒惰量词 1.4 分组 1.4.1 分组的使用 1.4.2 分组命名 1.4.3 反向引用分组 1.4.4 非捕获分组 1.5 re模块 1.5.1 search()和match()函数 1.5.2 findall()

  • python正则表达式re.sub各个参数的超详细讲解

    目录 一.re.sub(pattern, repl, string, count=0, flags=0) 二.参数讲解 1.pattern参数 2.repl参数 2.1.repl是字符串 2.2.repl是函数 3.string参数 4.count参数 5.flags参数 5.1.IGNORECASE(简写I) 5.2.LOCALE(简写L) 5.3.MULTILINE(简写M) 5.4.DOTALL(简写S) 5.5.VERBOSE(简写X) 补充:repl为函数时的用法 总结 一.re.su

  • Python 数据可视化超详细讲解折线图的实现

    绘制简单的折线图 在使用matplotlib绘制简单的折线图之前首先需要安装matplotlib,直接在pycharm终端pip install matplotlib即可 使用matplotlib绘制简单的折线图,再对其进行定制,实现数据的可视化操作 import matplotlib.pyplot as plt # 导入pyplot模块并设置别名为plt squares = [1, 4, 9, 16, 25] plt.plot(squares) plt.show() # 打开matplotib

  • Python OpenCV超详细讲解读取图像视频和网络摄像头

    0.准备工作 右击新建的项目,选择Python File,新建一个Python文件,然后在开头import cv2导入cv2库. 1.读取图像调用imread()方法获取我们资源文件夹中的图片使用imshow()方法显示图片,窗口名称为OutputwaitKey(0)这句可以让窗口一直保持,如果去掉这句,窗口会一闪而过 我们来看下效果: 2.读取视频VideoCapture()方法的参数就是视频文件循环中通过read不断地去读视频的每一帧,再通过imshow显示出来最后if语句代表按q可以退出程

  • Python OpenCV超详细讲解基本功能

    目录 准备工作 转成灰度图像 高斯模糊 边缘检测 膨胀运算 腐蚀运算 准备工作 右击新建的项目,选择Python File,新建一个Python文件,然后在开头import cv2导入cv2库. 转成灰度图像 调用imread()方法获取我们资源文件夹中的图片lena.png cvtColor()方法可以让我们的图片转换成任意颜色,第一个参数是我们要转换的图片,第二个参数是要转成的颜色空间,cv2.COLOR_BGR2GRAY就是由BGR变为GRAY,我们日常生活中都是RGB三通道顺序,而在Op

  • Python OpenCV超详细讲解调整大小与图像操作的实现

    目录 准备工作 重新调整图像大小 图像裁剪 准备工作 右击新建的项目,选择Python File,新建一个Python文件,然后在开头import cv2导入cv2库. 我们还要知道在OpenCV中,坐标轴的方向是x轴向右,y轴向下,坐标原点在左上角,比如下面这张长为640像素,宽为480像素的图片.OK,下面开始本节的学习吧. 查看图像大小 调用imread()方法获取我们资源文件夹中的图片lambo.png 输出图像的shape属性 img=cv2.imread("Resources/lam

  • Python OpenCV超详细讲解透视变换的实现

    目录 准备工作 场景描述 透视变换 准备工作 右击新建的项目,选择Python File,新建一个Python文件,然后在开头import cv2导入cv2库,import numpy并且重命名为np. 我们还要知道在OpenCV中,坐标轴的方向是x轴向右,y轴向下,坐标原点在左上角,比如下面这张长为640像素,宽为480像素的图片.OK,下面开始本节的学习吧. 场景描述 给定任意一张图像,从中分割出你需要的区域,并且以指定的大小显示出来.而且分割出的图像在线性空间中还是与显示的窗口是平行的.就

  • Python OpenCV超详细讲解图像堆叠的实现

    目录 准备工作 水平堆叠 垂直堆叠 图像栈堆叠 准备工作 右击新建的项目,选择Python File,新建一个Python文件,然后在开头import cv2导入cv2库,import numpy并且重命名为np. import cv2 import numpy as np 我们还要知道在OpenCV中,坐标轴的方向是x轴向右,y轴向下,坐标原点在左上角,比如下面这张长为640像素,宽为480像素的图片.OK,下面开始本节的学习吧. 水平堆叠 调用np的hstack()水平堆栈方法,参数是我们要

  • Python OpenCV超详细讲解图像堆叠的实现

    目录 准备工作 水平堆叠 垂直堆叠 图像栈堆叠 准备工作 右击新建的项目,选择Python File,新建一个Python文件,然后在开头import cv2导入cv2库,import numpy并且重命名为np. import cv2 import numpy as np 我们还要知道在OpenCV中,坐标轴的方向是x轴向右,y轴向下,坐标原点在左上角,比如下面这张长为640像素,宽为480像素的图片.OK,下面开始本节的学习吧. 水平堆叠 调用np的hstack()水平堆栈方法,参数是我们要

  • Python超详细讲解内存管理机制

    目录 什么是内存管理机制 一.引用计数机制 二.数据池和缓存 什么是内存管理机制 python中创建的对象的时候,首先会去申请内存地址,然后对对象进行初始化,所有对象都会维护在一 个叫做refchain的双向循环链表中,每个数据都保存如下信息: 1. 链表中数据前后数据的指针 2. 数据的类型 3. 数据值 4. 数据的引用计数 5. 数据的长度(list,dict..) 一.引用计数机制 引用计数增加: 1.1 对象被创建 1.2 对象被别的变量引用(另外起了个名字) 1.3 对象被作为元素,

随机推荐