opencv学习笔记C++绘制灰度直方图

直方图的计算很简单,无非就是遍历图像的像素,统计每个灰度级的个数,opencv中calcHist函数能够同时计算过个图像,多个通道,不同灰度范围的灰度直方图。

void calcHist(const Mat* images, int nimages,
		const int* channels, InputArray mask,
		OutputArray hist, int dims, const int* histSize,
		const float** ranges, bool uniform = true, bool accumulate = false);

参数释义

images 输入的图像

nimages 输入的图像个数

channels 统计直方图第几通道

mask 可选的操作掩码

hist 输出的直方图数组

dims 需要统计直方图通道的个数

histSize 直方图分成多少个区间

ranges 像素值区间

uniform 是否进行归一化处理

accumulate 在多个图像时是否计算像素值个数

接下来直接看代码:

	Mat img;
	img = imread("猫1.jpg",0);
	int channels[] = { 0 };
	int bins = 256;
	Mat hist;
	int hist_size[] = { bins };
	float range[] = { 0,256 };
	const float*ranges[] = { range };
	calcHist(&img, 1, 0, Mat(), hist, 1, hist_size, ranges);
	double max_val;
	minMaxLoc(hist, 0, &max_val);//定义矩阵中最小值,最大值的位置
	int scale = 2;
	int hist_height =256;
	Mat hist_ing = Mat::zeros(hist_height, scale*bins, CV_8UC3);
	for (int i = 0; i < bins; i++)
	{
		float bin_val = hist.at<float>(i);//图像的灰度频率表
		int inten = cvRound(bin_val*hist_height / max_val);//绘制高度
		rectangle(hist_ing, Point(scale*i, hist_height - 1), Point((i + 1)*scale - 1, hist_height - inten), CV_RGB(255, 255, 255));
	}
	imshow("直方图", hist_ing);
	waitKey(0);

效果如下:

以上就是opencv学习笔记C++绘制灰度直方图的详细内容,更多关于C++ opencv灰度直方图的资料请关注我们其它相关文章!

(0)

相关推荐

  • C++ OpenCV实现灰度图蒙版GrayMask的示例代码

    目录 需求说明 具体流程 功能函数 C++测试代码 测试效果 需求说明 在对图像进行处理时,经常会有这类需求:想对感兴趣区域进行掩膜处理,只操作掩膜内数据,此时需要搭配掩膜绘制功能,并在绘制过程中希望能区分掩膜区和非掩膜区:除了掩膜本身的线条以外,还希望掩膜内图像是原色,掩膜外图像的颜色进行一定调整:通常可以采用图像透明化或者色彩单通道加深的方式实现. 比如对三通道的图像,可以将掩膜外数据的红通道数值提高,此时该部分图像就会偏红色,如下图1所示. 图1 颜色加深的蒙版效果 但是针对灰度图,因为图

  • C++ OpenCV学习之图像像素值统计

    目录 1.常用的像素值统计 2.像素值统计计算 3.图像统计值分析 本课所用API查阅 opencv知识点: 图像像素最小/最大值 - minMaxLoc 图像像素均值/标准差 - meanStdDev 本课所解决的问题: 如何获取图像像素的最小/最大值? 如何获取图像像素的均值/标准差? 通过图像像素统计值我们能干什么? 1.常用的像素值统计 在图像分析的时候,我们经常需要对单通道图像的像素进行统计,以下4种是比较常用的 最小值(min) 最大值(max) 平均值(mean) 标准差(stan

  • C++使用opencv读取图片的操作代码(图像处理)

    目录 代码理解 全部代码 读取结果 参考 代码理解 using namespace cv; 解释:加入此代码,后面就不需要在函数前加入cv:: 如从cv::imread(),可以直接写成imread() int main(int argc, char** argv) { return 0: } 解释: // argc是命令行,总的参数个数; argv[]是argc个参数,其中第0个参数是程序的全名,以后的参数命令行后面跟的用户输入的参数 // char *argv[] 用来取得你所输入的参数 /

  • C++ OpenCV中几种基本的图像处理方式

    目录 一.图像显示 1.OpenCV的命名空间 2.Mat类简析 3.图像的载入:imread()函数 4.imshow()函数 二.图像腐蚀和膨胀 三.图像模糊 四.canny边缘检测 虽然单单要做车牌号识别的话不需要特别多种类的图像处理,但是我们不能只是为了这么一个目标去学习,所以这次就讲一些OpenCV里基本的图像处理,大家以后可以根据需求使用不同的图像处理. 一.图像显示 [打开Visual Studio]→[新建项目]→[Win32控制台应用项目(修改名称后点确定)]→[下一步]→[空

  • C++ OpenCV绘制简易直方图DrawHistImg

    目录 需求说明 具体流程 功能函数 C++测试代码 测试效果 需求说明 在对图像进行处理时,经常会有这类需求:想要观察图像的直方图分布,例如灰度图中0-255区间数值的分布情况,从而可以进行后续的操作,如阈值分割二值化.直方图均衡化等等.本文设计了一个能绘制简易直方图的简单函数DrawHistImg,可以帮助大家快速掌握绘制的原理,可以根据自己的创意对其进行改善和补充. 下面介绍具体实现流程. 具体流程 1)取图像的灰度图,并遍历统计0-255各个灰度值所出现的次数. cv::Mat src =

  • opencv学习笔记C++绘制灰度直方图

    直方图的计算很简单,无非就是遍历图像的像素,统计每个灰度级的个数,opencv中calcHist函数能够同时计算过个图像,多个通道,不同灰度范围的灰度直方图. void calcHist(const Mat* images, int nimages, const int* channels, InputArray mask, OutputArray hist, int dims, const int* histSize, const float** ranges, bool uniform =

  • python OpenCV学习笔记之绘制直方图的方法

    本篇文章主要介绍了python OpenCV学习笔记之绘制直方图的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考.一起跟随小编过来看看吧 官方文档 – https://docs.opencv.org/3.4.0/d1/db7/tutorial_py_histogram_begins.html 直方图会让你对图像的强度分布有一个全面的认识.它是一个在x轴上带有像素值(从0到255,但不总是),在y轴上的图像中对应的像素数量的图. 这只是理解图像的另一种方式.通过观察图像的直方图,你可以直

  • python OpenCV学习笔记实现二维直方图

    本文介绍了python OpenCV学习笔记实现二维直方图,分享给大家,具体如下: 官方文档 – https://docs.opencv.org/3.4.0/dd/d0d/tutorial_py_2d_histogram.html 在前一篇文章中,我们计算并绘制了一维的直方图.它被称为一维,因为我们只考虑一个特性,即像素的灰度强度值.但是在二维直方图中,你可以考虑两个特征.通常它用于寻找颜色直方图,其中两个特征是每个像素的色调和饱和度值. 有一个python样例(samples/python/c

  • python OpenCV学习笔记直方图反向投影的实现

    本文介绍了python OpenCV学习笔记直方图反向投影的实现,分享给大家,具体如下: 官方文档 – https://docs.opencv.org/3.4.0/dc/df6/tutorial_py_histogram_backprojection.html 它用于图像分割或寻找图像中感兴趣的对象.简单地说,它创建一个与我们的输入图像相同大小(但单通道)的图像,其中每个像素对应于属于我们对象的像素的概率.输出图像将使我们感兴趣的对象比其余部分更白. 该怎么做呢?我们创建一个图像的直方图,其中包

  • 详解python OpenCV学习笔记之直方图均衡化

    本文介绍了python OpenCV学习笔记之直方图均衡化,分享给大家,具体如下: 官方文档 – https://docs.opencv.org/3.4.0/d5/daf/tutorial_py_histogram_equalization.html 考虑一个图像,其像素值仅限制在特定的值范围内.例如,更明亮的图像将使所有像素都限制在高值中.但是一个好的图像会有来自图像的所有区域的像素.所以你需要把这个直方图拉伸到两端(如下图所给出的),这就是直方图均衡的作用(用简单的话说).这通常会改善图像的

  • Python+OpenCV绘制灰度直方图详解

    1.直方图的概念 图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的.纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比.图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征. 图像灰度直方图: 一幅图像由不同灰度值的像素组成,图像中灰度的分布情况是该图像的一个重要特征.图像的灰度直方图就描述了图像中灰度分布情况,能够很直观的展示出图像中各个灰度级所占的多少.图像的灰度直方图是灰度级的函数,描述的是图像中

  • python OpenCV学习笔记

    图像翻转 使用Python的一个包,imutils.使用下面的指令可以安装. pip install imutils imutils包的Github地址:https://github.com/jrosebr1/imutils CSDN镜像:https://codechina.csdn.net/mirrors/jrosebr1/imutils 可以在上面这个地址里面学习更多的使用方式. import cv2 import imutils ''' imutils.rotate 第一个参数是翻转的图像

  • Python OpenCV学习之图形绘制总结

    目录 背景 一.画线 二.画矩形 三.画圆 四.画多边形 五.画文本 六.鼠标绘制 总结 背景 使用OpenCV进行图形绘制是一种必备的技能,在图像的任务中,不管是图像检测还是图像识别,我们都需要通过绘制图形和绘制文字对处理的结果进行说明,本篇就详细介绍下图形的绘制: 一.画线 line(图像,起始点,终点,颜色,线宽,线形):一般只需要前面四个参数即可: 代码案例: cv2.line(img, (20, 100), (20, 500), (0,0,255)) 画出了一条Y方向上的红色线段: 二

  • opencv python统计及绘制直方图的方法

    灰度直方图概括了图像的灰度级信息,简单的来说就是每个灰度级图像中的像素个数以及占有率,创建直方图无外乎两个步骤,统计直方图数据,再用绘图库绘制直方图. 统计直方图数据 首先要稍微理解一些与函数相关的术语,方便理解其在python3库中的应用和处理 BINS: 在上面的直方图当中,如果像素值是0到255,则需要256个值来显示直 方图.但是,如果不需要知道每个像素值的像素数目,只想知道两个像素值之间的像素点数目怎么办?例如,想知道像素值在0到15之间的像素点数目,然后是16到31...240到25

随机推荐