python中文分词库jieba使用方法详解

安装python中文分词库jieba

法1:Anaconda Prompt下输入conda install jieba

法2:Terminal下输入pip3 install jieba

1、分词

1.1、CUT函数简介

cut(sentence, cut_all=False, HMM=True)

返回生成器,遍历生成器即可获得分词的结果

lcut(sentence)

返回分词列表

import jieba
sentence = '我爱自然语言处理'
# 创建【Tokenizer.cut 生成器】对象
generator = jieba.cut(sentence)
# 遍历生成器,打印分词结果
words = '/'.join(generator)
print(words)

打印结果

我/爱/自然语言/处理

import jieba
print(jieba.lcut('我爱南海中学'))

打印结果

[‘我', ‘爱', ‘南海中学']

1.2、分词模式

精确模式:精确地切开

全模式:所有可能的词语都切出,速度快

搜索引擎模式:在精确模式的基础上,对长词再次切分

import jieba
sentence = '订单数据分析'
print('精准模式:', jieba.lcut(sentence))
print('全模式:', jieba.lcut(sentence, cut_all=True))
print('搜索引擎模式:', jieba.lcut_for_search(sentence))

打印结果

精准模式: [‘订单', ‘数据分析']

全模式: [‘订单', ‘订单数', ‘单数', ‘数据', ‘数据分析', ‘分析']

搜索引擎模式: [‘订单', ‘数据', ‘分析', ‘数据分析']

1.3、词性标注

jieba.posseg
import jieba.posseg as jp
sentence = '我爱Python数据分析'
posseg = jp.cut(sentence)
for i in posseg:
 print(i.__dict__)
 # print(i.word, i.flag)

打印结果

{‘word': ‘我', ‘flag': ‘r'}
{‘word': ‘爱', ‘flag': ‘v'}
{‘word': ‘Python', ‘flag': ‘eng'}
{‘word': ‘数据分析', ‘flag': ‘l'}

词性标注表

标注 解释 标注 解释 标注 解释
a 形容词 mq 数量词 tg 时语素
ad 副形词 n 名词 u 助词
ag 形语素 ng 例:义 乳 亭 ud 例:得
an 名形词 nr 人名 ug 例:过
b 区别词 nrfg 也是人名 uj 例:的
c 连词 nrt 也是人名 ul 例:了
d 副词 ns 地名 uv 例:地
df 例:不要 nt 机构团体 uz 例:着
dg 副语素 nz 其他专名 v 动词
e 叹词 o 拟声词 vd 副动词
f 方位词 p 介词 vg 动语素
g 语素 q 量词 vi 例:沉溺于 等同于
h 前接成分 r 代词 vn 名动词
i 成语 rg 例:兹 vq 例:去浄 去过 唸过
j 简称略语 rr 人称代词 x 非语素字
k 后接成分 rz 例:这位 y 语气词
l 习用语 s 处所词 z 状态词
m 数词 t 时间词 zg 例:且 丗 丟

1.4、词语出现的位置

jieba.tokenize(sentence)
import jieba
sentence = '订单数据分析'
generator = jieba.tokenize(sentence)
for position in generator:
 print(position)

打印结果

(‘订单', 0, 2)
(‘数据分析', 2, 6)

2、词典

2.1、默认词典

import jieba, os, pandas as pd
# 词典所在位置
print(jieba.__file__)
jieba_dict = os.path.dirname(jieba.__file__) + r'\dict.txt'
# 读取字典
df = pd.read_table(jieba_dict, sep=' ', header=None)[[0, 2]]
print(df.head())
# 转字典
dt = dict(df.values)
print(dt.get('暨南大学'))

2.2、添词和删词

往词典添词

add_word(word, freq=None, tag=None)

往词典删词,等价于add_word(word, freq=0)

del_word(word)

import jieba
sentence = '天长地久有时尽,此恨绵绵无绝期'
# 添词
jieba.add_word('时尽', 999, 'nz')
print('添加【时尽】:', jieba.lcut(sentence))
# 删词
jieba.del_word('时尽')
print('删除【时尽】:', jieba.lcut(sentence))

打印结果

添加【时尽】: [‘天长地久', ‘有', ‘时尽', ‘,', ‘此恨绵绵', ‘无', ‘绝期']

删除【时尽】: [‘天长地久', ‘有时', ‘尽', ‘,', ‘此恨绵绵', ‘无', ‘绝期']

2.3、自定义词典加载

新建词典,按照格式【单词 词频 词性】添词,以UTF-8编码保存

使用函数load_userdict加载词典

import os, jieba
# 创建自定义字典
my_dict = 'my_dict.txt'
with open(my_dict, 'w', encoding='utf-8') as f:
 f.write('慕容紫英 9 nr\n云天河 9 nr\n天河剑 9 nz')
# 加载字典进行测试
sentence = '慕容紫英为云天河打造了天河剑'
print('加载前:', jieba.lcut(sentence))
jieba.load_userdict(my_dict)
print('加载后:', jieba.lcut(sentence))
os.remove(my_dict)

打印结果

加载前: [‘慕容', ‘紫英为', ‘云', ‘天河', ‘打造', ‘了', ‘天河', ‘剑']

加载后: [‘慕容紫英', ‘为', ‘云天河', ‘打造', ‘了', ‘天河剑']

2.4、使单词中的字符连接或拆分

suggest_freq(segment, tune=False)

import jieba
sentence = '上穷碧落下黄泉,两处茫茫皆不见'
print('修正前:', ' | '.join(jieba.cut(sentence)))
jieba.suggest_freq(('落', '下'), True)
print('修正后:', ' | '.join(jieba.cut(sentence)))

打印结果

修正前: 上穷 | 碧 | 落下 | 黄泉 | , | 两处 | 茫茫 | 皆 | 不见

修正后: 上穷 | 碧落 | 下 | 黄泉 | , | 两处 | 茫茫 | 皆 | 不见

3、jieba分词原理

基于词典,对句子进行词图扫描,生成所有成词情况所构成的有向无环图(Directed Acyclic Graph)

根据DAG,反向计算最大概率路径(动态规划算法;取对数防止下溢,乘法运算转为加法)

根据路径获取最大概率的分词序列

import jieba
sentence = '中心小学放假'
DAG = jieba.get_DAG(sentence)
print(DAG)
route = {}
jieba.calc(sentence, DAG, route)
print(route)

DAG

{0: [0, 1, 3], 1: [1], 2: [2, 3], 3: [3], 4: [4, 5], 5: [5]}

最大概率路径

{6: (0, 0), 5: (-9.4, 5), 4: (-12.6, 5), 3: (-20.8, 3), 2: (-22.5, 3), 1: (-30.8, 1), 0: (-29.5, 3)}

4、识别【带空格的词】

示例:使Blade Master这类中间有空格的词被识别

import jieba, re
sentence = 'Blade Master疾风刺杀Archmage'
jieba.add_word('Blade Master') # 添词
print('修改前:', jieba.lcut(sentence))
jieba.re_han_default = re.compile('(.+)', re.U) # 修改格式
print('修改后:', jieba.lcut(sentence))

打印结果

修改前: [‘Blade', ' ', ‘Master', ‘疾风', ‘刺杀', ‘Archmage']

修改后: [‘Blade Master', ‘疾风', ‘刺杀', ‘Archmage']

5、其它

5.1、并行分词

运行环境:linux系统

开启并行分词模式,参数n为并发数:jieba.enable_parallel(n)

关闭并行分词模式:jieba.disable_parallel()

5.2、关键词提取

基于TF-IDF:jieba.analyse

基于TextRank:jieba.textrank

import jieba.analyse as ja, jieba
text = '柳梦璃施法破解了狐仙的法术'
jieba.add_word('柳梦璃', tag='nr')
keywords1 = ja.extract_tags(text, allowPOS=('n', 'nr', 'ns', 'nt', 'nz'))
print('基于TF-IDF:', keywords1)
keywords2 = ja.textrank(text, allowPOS=('n', 'nr', 'ns', 'nt', 'nz'))
print('基于TextRank:', keywords2)

打印结果

基于TF-IDF: [‘柳梦璃', ‘狐仙', ‘法术']

基于TextRank: [‘狐仙', ‘柳梦璃', ‘法术']

5.3、修改HMM参数

import jieba
text = '柳梦璃解梦C法'
print(jieba.lcut(text, HMM=False)) # ['柳', '梦', '璃', '解梦', 'C', '法']
print(jieba.lcut(text)) # ['柳梦璃', '解梦', 'C', '法']
jieba.finalseg.emit_P['B']['C'] = -1e-9 # begin
print(jieba.lcut(text)) # ['柳梦璃', '解梦', 'C', '法']
jieba.finalseg.emit_P['M']['梦'] = -100 # middle
print(jieba.lcut(text)) # ['柳', '梦璃', '解梦', 'C', '法']
jieba.finalseg.emit_P['S']['梦'] = -.1 # single
print(jieba.lcut(text)) # ['柳', '梦', '璃', '解梦', 'C', '法']
jieba.finalseg.emit_P['E']['梦'] = -.01 # end
print(jieba.lcut(text)) # ['柳梦', '璃', '解梦', 'C', '法']
jieba.del_word('柳梦') # Force_Split_Words
print(jieba.lcut(text)) # ['柳', '梦', '璃', '解梦', 'C', '法']

print

[‘柳', ‘梦', ‘璃', ‘解梦', ‘C', ‘法']

[‘柳梦璃', ‘解梦', ‘C', ‘法']

[‘柳梦璃', ‘解梦', ‘C', ‘法']

[‘柳', ‘梦璃', ‘解梦', ‘C', ‘法']

[‘柳', ‘梦', ‘璃', ‘解梦', ‘C', ‘法']

[‘柳梦', ‘璃', ‘解梦', ‘C', ‘法']

[‘柳', ‘梦', ‘璃', ‘解梦', ‘C', ‘法']

更多关于python中文分词库jieba使用方法请查看下面的相关链接

(0)

相关推荐

  • python实现中文分词FMM算法实例

    本文实例讲述了python实现中文分词FMM算法.分享给大家供大家参考.具体分析如下: FMM算法的最简单思想是使用贪心算法向前找n个,如果这n个组成的词在词典中出现,就ok,如果没有出现,那么找n-1个...然后继续下去.假如n个词在词典中出现,那么从n+1位置继续找下去,直到句子结束. import re def PreProcess(sentence,edcode="utf-8"): sentence = sentence.decode(edcode) sentence=re.s

  • python中文分词教程之前向最大正向匹配算法详解

    前言 大家都知道,英文的分词由于单词间是以空格进行分隔的,所以分词要相对的容易些,而中文就不同了,中文中一个句子的分隔就是以字为单位的了,而所谓的正向最大匹配和逆向最大匹配便是一种分词匹配的方法,这里以词典匹配说明. 最大匹配算法是自然语言处理中的中文匹配算法中最基础的算法,分为正向和逆向,原理都是一样的. 正向最大匹配算法,故名思意,从左向右扫描寻找词的最大匹配. 首先我们可以规定一个词的最大长度,每次扫描的时候寻找当前开始的这个长度的词来和字典中的词匹配,如果没有找到,就缩短长度继续寻找,直

  • python使用jieba实现中文分词去停用词方法示例

    前言 jieba 基于Python的中文分词工具,安装使用非常方便,直接pip即可,2/3都可以,功能强悍,十分推荐. 中文分词(Chinese Word Segmentation) 指的是将一个汉字序列切分成一个一个单独的词. 分词模块jieba,它是python比较好用的分词模块.待分词的字符串可以是 unicode 或 UTF-8 字符串.GBK 字符串.注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8 支持三种分词模式 1 精确模式,试图将句子最精确地切开,适合

  • python中文分词,使用结巴分词对python进行分词(实例讲解)

    在采集美女站时,需要对关键词进行分词,最终采用的是python的结巴分词方法. 中文分词是中文文本处理的一个基础性工作,结巴分词利用进行中文分词. 其基本实现原理有三点: 1.基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG) 2.采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 3.对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法 安装(Linux环境) 下载工具包,解压后进入目录下,运行:python set

  • Python结巴中文分词工具使用过程中遇到的问题及解决方法

    本文实例讲述了Python结巴中文分词工具使用过程中遇到的问题及解决方法.分享给大家供大家参考,具体如下: 结巴分词是Python语言中效果最好的分词工具,其功能包括:分词.词性标注.关键词抽取.支持用户词表等.这几天一直在研究这个工具,在安装与使用过程中遇到一些问题,现在把自己的一些方法帖出来分享一下. 官网地址:https://github.com/fxsjy/jieba 1.安装. 按照官网上的说法,有三种安装方式, 第一种是全自动安装:easy_install jieba 或者 pip

  • Python中文分词实现方法(安装pymmseg)

    本文实例讲述了Python中文分词实现方法.分享给大家供大家参考,具体如下: 在Python这pymmseg-cpp 还是十分方便的! 环境 ubuntu10.04 , python2.65 步骤: 1 下载mmseg-cpp的源代码 http://code.google.com/p/pymmseg-cpp/ 2 执行: tar -zxf pymmseg-cpp*.tar.gz //解压后得到pymmseg 目录 cd pymmseg\mmseg-cpp python build.py #生成

  • Python中文分词工具之结巴分词用法实例总结【经典案例】

    本文实例讲述了Python中文分词工具之结巴分词用法.分享给大家供大家参考,具体如下: 结巴分词工具的安装及基本用法,前面的文章<Python结巴中文分词工具使用过程中遇到的问题及解决方法>中已经有所描述.这里要说的内容与实际应用更贴近--从文本中读取中文信息,利用结巴分词工具进行分词及词性标注. 示例代码如下: #coding=utf-8 import jieba import jieba.posseg as pseg import time t1=time.time() f=open(&q

  • python中文分词库jieba使用方法详解

    安装python中文分词库jieba 法1:Anaconda Prompt下输入conda install jieba 法2:Terminal下输入pip3 install jieba 1.分词 1.1.CUT函数简介 cut(sentence, cut_all=False, HMM=True) 返回生成器,遍历生成器即可获得分词的结果 lcut(sentence) 返回分词列表 import jieba sentence = '我爱自然语言处理' # 创建[Tokenizer.cut 生成器]

  • Python实现文本特征提取的方法详解

    目录 1.字典文本特征提取 DictVectorizer() 1.1 one-hot编码 1.2 字典数据转sparse矩阵 2.英文文本特征提取 3.中文文本特征提取 4. TF-IDF 文本特征提取 TfidfVectorizer() 1.字典文本特征提取 DictVectorizer() 1.1 one-hot编码 创建一个字典,观察如下数据形式的变化: import pandas as pd from sklearn.feature_extraction import DictVecto

  • Python中文分词库jieba,pkusegwg性能准确度比较

    中文分词(Chinese Word Segmentation),将中文语句切割成单独的词组.英文使用空格来分开每个单词的,而中文单独一个汉字跟词有时候完全不是同个含义,因此,中文分词相比英文分词难度高很多. 分词主要用于NLP 自然语言处理(Natural Language Processing),使用场景有: 搜索优化,关键词提取(百度指数) 语义分析,智能问答系统(客服系统) 非结构化文本媒体内容,如社交信息(微博热榜) 文本聚类,根据内容生成分类(行业分类) Python的中文分词 Pyt

  • Python对象类型及其运算方法(详解)

    基本要点: 程序中储存的所有数据都是对象(可变对象:值可以修改 不可变对象:值不可修改) 每个对象都有一个身份.一个类型.一个值 例: >>> a1 = 'abc' >>> type(a1) str 创建一个字符串对象,其身份是指向它在内存中所处的指针(在内存中的位置) a1就是引用这个具体位置的名称 使用type()函数查看其类型 其值就是'abc' 自定义类型使用class 对象的类型用于描述对象的内部表示及其支持的方法和操作 创建特定类型的对象,也将该对象称为该类

  • Python 常用模块 re 使用方法详解

    一.re模块的查找方法: 1.findall   匹配所有每一项都是列表中的一个元素 import re ret = re.findall('\d+','asd鲁班七号21313') # 正则表达式,待匹配的字符串,flag # ret = re.findall('\d','asd鲁班七号21313') # 正则表达式,待匹配的字符串,flag # print(ret) 2.search 只匹配从左到右的第一个,等到的不是直接的结果,而是一个变量,通过这个变量的group方法来获取结果 impo

  • 在自动化中用python实现键盘操作的方法详解

    原来在robotframework中使用press key方法进行键盘的操作,但是该方法需要写被操作对象的locator,不是很方便,现在找到了一种win32api库写键盘操作的一个方法(注意:此方法被操作界面必须在顶层),首先,需要安装win32api的python库,使用命令: pip install pywin32 具体实现代码如下: import win32api import win32con class MyLibrary(object): def keybd_event(self,

  • 对Python实现累加函数的方法详解

    这个需求比较奇怪,要求实现Sum和MagaSum函数,实现以下功能 Sum(1) =>1 Sum(1,2,3) =>6 MegaSum(1)() =>1 MegaSum(1)(2)(3)() =>6 实际上Sum就是Python自建的sum函数,它支持变参,变参怎么实现,自然是*args,所以很容易写出雏形: Sum def Sum(*args): count = 0 for i in args: count+=i return count 第二个函数就有点皮了,它要求有参数的时候

  • python对于requests的封装方法详解

    由于requests是http类接口的核心,因此封装前考虑问题比较多: 1. 对多种接口类型的支持: 2. 连接异常时能够重连: 3. 并发处理的选择: 4. 使用方便,容易维护: 当前并未全部实现,后期会不断完善.重点提一下并发处理的选择:python的并发处理机制由于存在GIL的原因,实现起来并不是很理想,综合考虑多进程.多线程.协程,在不考虑大并发性能测试的前提下使用了多线程-线程池的形式实现.使用的是 concurrent.futures模块.当前仅方便支持webservice接口. #

  • 对Python捕获控制台输出流的方法详解

    有时候我们的代码里可能要调用控制台命令,比如我想用Python写一个批量编译 .java 文件的脚本,用到如下代码 常规用法 os.system import os,traceback try: p = os.system("javac Test.java") print p except: print "\nexcept:\n" print traceback.format_exc() 如然编译成功会返回一个0,如果错误会返回一个非0的值给p,这种方法可以知道执行

  • python文件处理fileinput使用方法详解

    这篇文章主要介绍了python文件处理fileinput使用方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.介绍 fileinput模块可以对一个或多个文件中的内容进行迭代.遍历等操作,我们常用的open函数是对一个文件进行读写操作. fileinput模块的input()函数比open函数更高效和好用,体现在: input()函数生成一个迭代器,保证了在遇到大文件的读取时不会占用太大的内存. 用fileinput对文件进行循环遍历

随机推荐