Python 实现训练集、测试集随机划分

随机从列表中取出元素:

import random
dataSet = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]]
trainDataSet = random.sample(dataSet, 3)

以下函数,使用于我最近的一个机器学习的项目,将数据集数据按照比例随机划分成训练集数据和测试集数据:

import csv
import random
def getDataSet(proportion):
  """
    :exception
      获取训练集和测试集(将数据按比例随机划分)
    :parameter
      proportion - 测试集/数据集
    :return
      trainDataSet - 训练集
      testDataSet - 测试集
    author
      肖政宇
    modify
      2019年5月10日
  """
  dataSet = open('数据集.csv')
  dataSetReader = csv.reader(dataSet)
  """
    :exception
      将数据保存到数组
  """
  dataSet = []
  next(dataSetReader, 'none') # 跳过表头
  data = next(dataSetReader, 'none')
  while (data != 'none'):
    dataSet.append(data)
    data = next(dataSetReader, 'none')
  """
    :exception
      按照比例随机划分出训练集和测试集
  """
  dataNumber = dataSet.__len__() # 数据集数据条数
  testNumber = int(dataNumber * proportion) # 测试集数据条数
  testDataSet = [] # 测试数据集
  trainDataSet = [] # 训练数据集

  testDataSet = random.sample(dataSet, testNumber) # 测试集
  for testData in testDataSet: # 将已经选定的测试集数据从数据集中删除
    dataSet.remove(testData)
  trainDataSet = dataSet # 训练集

  return trainDataSet, testDataSet

以上这篇Python 实现训练集、测试集随机划分就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python 划分数据集为训练集和测试集的方法

    sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split from sklearn.cross_validation import train_test_split #x为数据集的feature熟悉,y为label. x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3) 得到的x_train,y_train(x_te

  • python Pandas如何对数据集随机抽样

    摘要:有时候我们只需要数据集中的一部分,并不需要全部的数据.这个时候我们就要对数据集进行随机的抽样.pandas中自带有抽样的方法. 应用场景: 我有10W行数据,每一行都11列的属性. 现在,我们只需要随机抽取其中的2W行. 实现方法很简单: 利用Pandas库中的sample. DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None) n是要抽取的行数.(例如n

  • 使用PyTorch将文件夹下的图片分为训练集和验证集实例

    PyTorch提供了ImageFolder的类来加载文件结构如下的图片数据集: root/dog/xxx.png root/dog/xxy.png root/dog/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/asd932_.png 使用这个类的问题在于无法将训练集(training dataset)和验证集(validation dataset)分开.我写了两个类来完成这个工作. import os import torch fro

  • Python分割训练集和测试集的方法示例

    数据集介绍 使用数据集Wine,来自UCI  .包括178条样本,13个特征. import pandas as pd import numpy as np df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', '

  • 用pandas划分数据集实现训练集和测试集

    1.使用model_select子模块中的train_test_split函数进行划分 数据:使用kaggle上Titanic数据集 划分方法:随机划分 # 导入pandas模块,sklearn中model_select模块 import pandas as pd from sklearn.model_select import train_test_split # 读取数据 data = pd.read_csv('.../titanic_dataset/train.csv') # 将特征划分到

  • Python 实现训练集、测试集随机划分

    随机从列表中取出元素: import random dataSet = [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]] trainDataSet = random.sample(dataSet, 3) 以下函数,使用于我最近的一个机器学习的项目,将数据集数据按照比例随机划分成训练集数据和测试集数据: import csv import random def getDataSet(proportion): """

  • python中如何实现将数据分成训练集与测试集的方法

    接下来,直接给出大家响应的代码,并对每一行进行标注,希望能够帮到大家. 需要用到的是库是.numpy .sklearn. #导入相应的库(对数据库进行切分需要用到的库是sklearn.model_selection 中的 train_test_split) import numpy as np from sklearn.model_selection import train_test_split #首先,读取.CSV文件成矩阵的形式. my_matrix = np.loadtxt(open("

  • 五个有趣的Python整蛊小程序合集

    目录 无聊程序之一 无聊程序之二 无聊程序之三 无聊程序之四 无聊程序之五 pyinstaller 编码 BUG Python 能做很多无聊,但有意思的事情,例如接下来的一些案例. 以下程序,不要发代码,要不实现不了你整蛊的目的. 要打包成一个 exe 程序,发给朋友才有意思. 使用 pip install pyinstaller. 打包命令如下: pyinstaller -F 文件名.py 过程中如果出现 BUG(一般是编码错误),点击导航查看解决方案 无聊程序之一 while True: n

  • Python使用Kubernetes API访问集群

    通过将身份认证令牌直接传给 API 服务器,可以避免使用 kubectl 代理,像这样: 使用 grep/cut 方式: # 查看所有的集群,因为你的 .kubeconfig 文件中可能包含多个上下文 kubectl config view -o jsonpath='{"Cluster name\tServer\n"}{range .clusters[*]}{.name}{"\t"}{.cluster.server}{"\n"}{end}' #

  • python如何使用unittest测试接口

    本文实例为大家分享了python使用unittest 测试接口的具体代码,供大家参考,具体内容如下 1.首先使用 python 的requests 对接口进行测试 # TestInface.py import requests,json url = visit.get_test_url() news_url = url+'news.info' headers = baseToken.basetoken_datas()['headers'] def new_data(data): r = requ

  • python+pytest自动化测试函数测试类测试方法的封装

    目录 前言 一.测试用例封装的一般规则 三.测试类/方法的封装 四.示例代码 总结 前言 今天呢,笔者想和大家聊聊python+pytest接口自动化中将代码进行封装,只有将测试代码进行封装,才能被测试框架识别执行. 例如单个接口的请求代码如下: import requests headers = { "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like

  • tensorflow学习笔记之简单的神经网络训练和测试

    本文实例为大家分享了用简单的神经网络来训练和测试的具体代码,供大家参考,具体内容如下 刚开始学习tf时,我们从简单的地方开始.卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始. 神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层. 数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出.输出的时候,我们可以使用softmax回归,输出属于每个类别的概率值.借用极客学院的图表示如下: 其中,x1,x2,x3为输入数据,经过运算后,

随机推荐