python、PyTorch图像读取与numpy转换实例

Tensor转为numpy

np.array(Tensor)

numpy转换为Tensor

torch.Tensor(numpy.darray)

PIL.Image.Image转换成numpy

np.array(PIL.Image.Image)

numpy 转换成PIL.Image.Image

Image.fromarray(numpy.ndarray)

首先需要保证numpy.ndarray 转换成np.uint8型

numpy.astype(np.uint8),像素值[0,255]。

同时灰度图像保证numpy.shape为(H,W),不能出现channels

这里需要np.squeeze()。彩色图象保证numpy.shape为(H,W,3)

之后Image.fromarray(numpy.ndarray)

PIL.Image.Image转换成Tensor

torchvision.transfrom

img=Image.open('00381fa010_940422.tif').convert('L')

import torchvision.transforms as transforms trans=transforms.Compose([transforms.ToTensor()])

a=trans(img)

Tensor转化成PIL.Image.Image

先转换成numpy,再转换成PIL.Image.Image

灰度图像

img=Image.open('00381fa010_940422.tif').convert('L')

import torchvision.transforms as transforms
trans=transforms.Compose([transforms.ToTensor()])

a=trans(img)
b=np.array(a) #b.shape (1,64,64)
maxi=b.max()
b=b*255./maxi
b=b.transpose(1,2,0).astype(np.uint8)
b=np.squeeze(b,axis=2)
xx=Image.fromarray(b)
xx

彩色图象

img2=Image.open('00381fa010_940422.tif').convert('RGB')
import torchvision.transforms as transforms
trans=transforms.Compose([transforms.ToTensor()])
a=trans(img2)
a=np.array(a)
maxi=a.max()
a=a/maxi*255
a=a.transpose(1,2,0).astype(np.uint8)
b=Image.fromarray(a)
b

python-opencv

import cv2
a=cv2.imread('00381fa010_940422.tif') #a.shape (64,64,3)
cv2.imwrite('asd.jpg',a)
Image.fromarray(a)
b=cv2.imread('00381fa010_940422.tif',0)#b.shape (64,64)
Image.fromarray(b)

cv2.imread()返回numpy.darray, 读取灰度图像之后shape为(64,64),RGB图像的shape为(64,64,3),可直接用Image.fromarray()转换成Image。

cv写图像时,灰度图像shape可以为(H,W)或(H,W,1)。彩色图像(H,W,3)

要从numpy.ndarray得到PIL.Image.Image,灰度图的shape必须为(H,W),彩色为(H,W,3)

对于Variable类型不能直接转换成numpy.ndarray,需要用.data转换

np.array(a.data)

以上这篇python、PyTorch图像读取与numpy转换实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python通过VGG16模型实现图像风格转换操作详解

    本文实例讲述了Python通过VGG16模型实现图像风格转换操作.分享给大家供大家参考,具体如下: 1.图像的风格转化 卷积网络每一层的激活值可以看作一个分类器,多个分类器组成了图像在这一层的抽象表示,而且层数越深,越抽象 内容特征:图片中存在的具体元素,图像输入到CNN后在某一层的激活值 风格特征:绘制图片元素的风格,各个内容之间的共性,图像在CNN网络某一层激活值之间的关联 风格转换:在一幅图片内容特征的基础上添加另一幅图片的风格特征从而生成一幅新的图片.在卷积模型训练中,通过输入固定的图片

  • opencv-python 读取图像并转换颜色空间实例

    我就废话不多说了,直接上代码吧! #-*- encoding:utf-8 -*- ''' python 绘制颜色直方图 ''' import cv2 import numpy as np from matplotlib import pyplot as plt def readImage(): #读取图片 B,G,R,返回一个ndarray类型 #cv2.IMREAD_COLOR # 以彩色模式读入 1 #cv2.IMREAD_GRAYSCALE # 以灰色模式读入 0 img = cv2.im

  • python实现批量nii文件转换为png图像

    之前介绍过单个nii文件转换成png图像: https://www.jb51.net/article/165693.htm 这里介绍将多个nii文件(保存在一个文件夹下)转换成png图像.且图像单个文件夹的名称与nii名字相同. import numpy as np import os #遍历文件夹 import nibabel as nib #nii格式一般都会用到这个包 import imageio #转换成图像 def nii_to_image(niifile): filenames =

  • Python3+OpenCV2实现图像的几何变换(平移、镜像、缩放、旋转、仿射)

    前言 总结一下最近看的关于opencv图像几何变换的一些笔记. 这是原图: 1.平移 import cv2 import numpy as np img = cv2.imread("image0.jpg", 1) imgInfo = img.shape height = imgInfo[0] width = imgInfo[1] mode = imgInfo[2] dst = np.zeros(imgInfo, np.uint8) for i in range( height ): f

  • Python OpenCV读取png图像转成jpg图像存储的方法

    如下所示: import os import cv2 import sys import numpy as np path = "F:\\ImageLib\\VRWorks_360_Video _SDK_1.1\\footage14\\" print(path) for filename in os.listdir(path): if os.path.splitext(filename)[1] == '.png': # print(filename) img = cv2.imread(

  • 在Python下利用OpenCV来旋转图像的教程

    OpenCV是应用最被广泛的的开源视觉库.他允许你使用很少的代码来检测图片或视频中的人脸. 这里有一些互联网上的教程来阐述怎么在OpenCV中使用仿射变换(affine transform)旋转图片--他们并没有处理旋转一个图片里的矩形一般会把矩形的边角切掉这一问题,所以产生的图片需要修改.当正确的使用一点代码时,这是一点瑕疵. def rotate_about_center(src, angle, scale=1.): w = src.shape[1] h = src.shape[0] ran

  • Python 将RGB图像转换为Pytho灰度图像的实例

    问题: 我正尝试使用matplotlib读取RGB图像并将其转换为灰度. 在matlab中,我使用这个: img = rgb2gray(imread('image.png')); 在matplotlib tutorial中他们没有覆盖它.他们只是在图像中阅读 import matplotlib.image as mpimg img = mpimg.imread('image.png') 然后他们切片数组,但是这不是从我所了解的将RGB转换为灰度. lum_img = img[:,:,0] 编辑:

  • Python+OpenCV实现将图像转换为二进制格式

    在学习tensorflow的过程中,有一个问题,tensorflow在训练的过程中读取的是二进制图像数据库文件,而不是图像文件,因此 在进行训练.测试之前需要将图像文件转换为二进制格式. 下面是我在ubuntu中使用python+OpenCV读取图像并转换为二进制格式文件的代码. #coding=utf-8 ''' Created on 2016年3月24日 使用Opencv读取图像将其保存为二进制格式文件,再读取该二进制文件,转换为图像进行显示 @author: hanchao ''' imp

  • Python 实现判断图片格式并转换,将转换的图像存到生成的文件夹中

    我就废话不多说了,直接上代码吧! import Image from datetime import datetime import os str = '/home/dltest/caffe/examples/sgg_datas/images/result_test/zutest/' + datetime.now().strftime("%Y%m%d_%H%M%S") while True==os.path.exists(str): str = str + datetime.now()

  • Python生态圈图像格式转换问题(推荐)

    在Python生态圈里,最常用的图像库是PIL--尽管已经被后来的pillow取代,但因为pillow的API几乎完全继承了PIL,所以大家还是约定俗成地称其为PIL.除PIL之外,越来越多的程序员习惯使用openCV来处理图像.另外,在GUI库中,也有各自定义的图像处理机制,比如wxPyton,定义了wx.Image做为图像处理类,定义了wx.Bitmap做为图像显示类. 下图梳理出了PIL读写图像文件.cv2读写图像文件.PIL对象和cv2对象互转.PIL对象和wx.Image对象互转.以及

  • Python图像处理之图像的缩放、旋转与翻转实现方法示例

    本文实例讲述了Python图像处理之图像的缩放.旋转与翻转实现方法.分享给大家供大家参考,具体如下: 图像的几何变换,如缩放.旋转和翻转等,在图像处理中扮演着重要的角色,python中的Image类分别提供了这些操作的接口函数,下面进行逐一介绍. 1.图像的缩放 图像的缩放使用resize()成员函数,直接在入参中指定缩放后的尺寸即可,示例如下: #-*- coding: UTF-8 -*- from PIL import Image #读取图像 im = Image.open("lenna.j

随机推荐