树莓派4B安装Tensorflow的方法步骤

1.写作背景

Tensorflow官方在2018年宣布,正式发布支持树莓派版本的Tensorflow,编者开始直接用:

pip install tensorflow

进行安装,在安装成功后使用import进行验证时:

import tensorflow as tf

出现了如下所示报错:

E tensorflow/core/platform/hadoop/hadoop_file_system.cc:132] HadoopFileSystem load error: libhdfs.so: cannot open shared object file: No such file or directory

在花费了大量时间查询资料后,最终得到的解决,故做一个记录。

2.开始前的系统环境与设备

设备:树莓派4B一枚

系统:Raspberry PI OS 2020-5-27版

3.安装过程

Python 3.x + Tensorflow v1 系列

(1)安装必要的依赖项

$ sudo apt-get install -y libhdf5-dev libc-ares-dev libeigen3-dev gcc gfortran python-dev libgfortran5 \
             libatlas3-base libatlas-base-dev libopenblas-dev libopenblas-base libblas-dev \
             liblapack-dev cython openmpi-bin libopenmpi-dev libatlas-base-dev python3-dev

(2) 安装相关python包

$ sudo pip install keras_applications==1.0.8 --no-deps
$ sudo pip install keras_preprocessing==1.1.0 --no-deps
$ sudo pip install h5py==2.9.0
$ sudo pip install pybind11
$ pip install -U --user six wheel mock

(3)如果之前安装过tensorflow,卸载

$ sudo pip3 uninstall tensorflow

(4)下载Tensorflow

传送门1tensorflow-on-arm

传送门2Tensorflow-bin

选择你要的版本,我选择传送门2的tensorflow-1.15.0-cp37-cp37m-linux_armv7l.whl

$ wget https://github.com/PINTO0309/Tensorflow-bin/raw/master/tensorflow-1.15.0-cp37-cp37m-linux_armv7l.whl
$ sudo pip install tensorflow-1.15.0-cp37-cp37m-linux_armv7l.whl

(4)验证安装是否成功

安装成功后重启终端,运行Python后输入

>>import tensorflow as tf
>>tf.__version__

应该没有报错且正常输出版本信息。

Python 3.x + Tensorflow v2 系列

Tensorflow2系列的安装过程与1系列类似,不再赘述,直接上过程:

$ sudo apt-get install -y libhdf5-dev libc-ares-dev libeigen3-dev gcc gfortran python-dev libgfortran5 \
             libatlas3-base libatlas-base-dev libopenblas-dev libopenblas-base libblas-dev \
             liblapack-dev cython libatlas-base-dev openmpi-bin libopenmpi-dev python3-dev
$ sudo pip3 install keras_applications==1.0.8 --no-deps
$ sudo pip3 install keras_preprocessing==1.1.0 --no-deps
$ sudo pip3 install h5py==2.9.0
$ sudo pip3 install pybind11
$ pip3 install -U --user six wheel mock
$ wget "https://raw.githubusercontent.com/PINTO0309/Tensorflow-bin/master/tensorflow-2.2.0-cp37-cp37m-linux_armv7l_download.sh"
$ ./tensorflow-2.2.0-cp37-cp37m-linux_armv7l_download.sh
$ sudo pip3 uninstall tensorflow
$ sudo -H pip3 install tensorflow-2.2.0-cp37-cp37m-linux_armv7l.whl

4.参考资料

Error installing Tensorflow (cannot find libhdfs.so)

Install Tensorflow 2 on a Raspberry Pi 4

Tensorflow-bin

到此这篇关于树莓派4B安装Tensorflow的方法步骤的文章就介绍到这了,更多相关树莓派4B安装Tensorflow内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • TensorFlow2.1.0最新版本安装详细教程

    TensorFlow是一款优秀的深度学习框架,支持多种常见的操作系统,例如Windows10,Mac Os等等,同时也支持运行在NVIDIA显卡上的GPU版本以及仅使用CPU进行运算的CPU版本.此篇教程将介绍如何安装最新版TensorFlow框架(2.1.0版本) 安装步骤 1.常用IDE安装 2.CUDA安装 3.cuDNN神经网络加速库安装 4.TensorFlow框架安装 常用IDE安装 用户在Python官网上可以下载到最新版本(Python3.7)的解释器.(Python官网)Pyt

  • 解决安装tensorflow遇到无法卸载numpy 1.8.0rc1的问题

    最近在关注 Deep Learning,就在自己的mac上安装google的开源框架Tensorflow 用 sudo pip install -U tensorflow 安装的时候总是遇到下面的问题: sudo pip install -U tensorflow Password: The directory '/Users/jason/Library/Caches/pip/http' or its parent directory is not owned by the current us

  • Windows下anaconda安装第三方包的方法小结(tensorflow、gensim为例)

    anaconda 集成了很多科学计算中所需要的包,如numpy,scipy等等,具体查看anaconda中已经预先安装配置好的包有哪些,可以通过cmd命令,输入conda list 查看,如下图所示: 但是,因为实际需求,我们会需要导入列表中没有的第三方包,如gemsim,在anaconda中,我们可以参考以下步骤安装所需要的第三方包:         1.启动anaconda 命令窗口: 开始 > 所有程序 > anaconda >anaconda prompt    2.安装gens

  • Win7下Python与Tensorflow-CPU版开发环境的安装与配置过程

    以此文记录Python与Tensorflow及其开发环境的安装与配置过程,以备以后参考. 1 硬件与系统条件 Win7 64位系统,显卡为NVIDIA GeforeGT 635M 2 安装策略 a.由于以上原因,选择在win7下安装cpu版的tensorflow,使用anconda安装,总结下来,这么做是代价最小的. b. 首先,不要急于下载Python,因为最新的版本可能会与Anaconda中的Python版本发生冲突.以目前(截止2017-06-17日)的情况,Anaconda选择Anaco

  • win10安装Anaconda+tensorflow2.0-CPU+Pycharm的图文教程

    一.安装Anaconda 1.下载安装Anaconda. 去官网下载,打开安装包: Next: I Agree: Next: 安装路径可修改,但都在User文件路径下,点Next: 都打上勾,点击Install,等待安装完成. 2.测试anaconda: 键盘点击Win+R,输入cmd运行 然后输入conda list回车,如下图即成功. 二.安装tensorflow 1.使用Anaconda创建新环境. 打开Anaconda Prompt: 输入: conda create -n tensor

  • TensorFlow在MAC环境下的安装及环境搭建

    给大家分享一下TensorFlow在MAC系统中的安装步骤以及环境搭建的操作流程. TensorFlow 底层的图模型结构清晰,容易改造:支持分布式训练:可视化效果好.如果做长期项目,接触较大数据集的话,TensorFlow很适用,而且谷歌也在不断优化完备它,对于使用深度学习朋友,TensorFlow是一个很好的工具. 在学习了一段时间台大李宏毅关于deep learning的课程,以及一些其他机器学习的书之后,终于打算开始动手进行一些实践了. 感觉保完研之后散养状态下,学习效率太低了,于是便想

  • 解决Tensorflow安装成功,但在导入时报错的问题

    在Mac上按照官网教程安装成功tensor flow后,但在程序中导入时,仍然报错,包括但不限于以下两个错误.对于这种错误,原因主要在于Mac内默认的python库比较老了,即便通过pip命令安装了新的包,python也会默认导入默认位置的包.这时候需要做的就是删除,有冲突的包,对于以下两个错误,就是分别时numpy和six两个包冲突了. 可以在python命令行环境下,通过numpy.version和six.version两个命令查看当前版本,如果与预期的不一致,就可以删掉. 可以通过nump

  • TensorFlow安装及jupyter notebook配置方法

    tensorflow利用anaconda在ubuntu下安装方法及jupyter notebook运行目录及远程访问配置 Ubuntu下安装Anaconda bash ~/file_path/file_name.sh 出现许可后可按Ctrl+C跳过,yes同意. 安装完成后询问是否加入path路径,亦可自行修改文件内容 关闭命令台重开 python -V 可查看是否安装成功 修改anaconda的python版本,以符合tf要求 conda install python=3.5 Anaconda

  • 解决Linux Tensorflow2.0安装问题

    conda update conda pip install tf-nightly-gpu-2.0-preview conda install https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/cudnn-7.3.1-cuda10.0_0.tar.bz2 conda install https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/cud

  • windows环境下tensorflow安装过程详解

    一.前言 本次安装tensorflow是基于Python的,安装Python的过程不做说明(既然决定按,Python肯定要先了解啊):本次教程是windows下Anaconda安装Tensorflow的过程(cpu版,显卡不支持gpu版的...) 二.安装环境 (tensorflow支持的系统是64位的,windows和linux,mac都需要64位) windows7(其实和windows版本没什么关系,我的是windows7,安装时参照的有windows10的讲解) Python3.5.2(

  • windows安装TensorFlow和Keras遇到的问题及其解决方法

    安装TensorFlow在Windows上,真是让我心力交瘁,想死的心都有了,在Windows上做开发真的让人发狂. 首先说一下我的经历,本来也就是起初,网上说python3.7不支持TensorFlow环境,而且使用Anaconda最好,所以我将我之前Windows上所有的python环境卸载掉!!!,对没错,是所有,包括Anaconda环境,python环境,pycharm环境也卸载掉了.而且我丧心病狂的在电脑上找几乎所有关于python的字眼,全部删除掉,统统不留.只是为了铁了心在Wind

  • 详解TensorFlow在windows上安装与简单示例

    本文介绍了详解TensorFlow在windows上安装与简单示例,分享给大家,具体如下: 安装说明 平台:目前可在Ubuntu.Mac OS.Windows上安装 版本:提供gpu版本.cpu版本 安装方式:pip方式.Anaconda方式 Tips: 在Windows上目前支持python3.5.x gpu版本需要cuda8,cudnn5.1 安装进度 2017/3/4进度: Anaconda 4.3(对应python3.6)正在安装,又删除了,一无所有了 2017/3/5进度: Anaco

随机推荐