python 二维矩阵转三维矩阵示例
如下所示:
>>> import numpy as np >>> a = np.arange(12).reshape(3,4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> type(a) <class 'numpy.ndarray'> >>> b=np.reshape(a,(3,4,1)) >>> np.shape(b) (3, 4, 1) >>> c=np.concatenate([b,b],2) >>> np.shape(c) (3, 4, 2)
对于 numpy.ndarry格式的变量才行,常量不可以。
>>> b=np.mat([0,0,0]) >>> c=np.tile(b,(2,1)) >>> np.shape(c) (2, 3) >>> type(c) <class 'numpy.matrixlib.defmatrix.matrix'> >>> d=np.reshape(c,(2,3,1)) >>> np.shape(d)
以上这篇python 二维矩阵转三维矩阵示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
python的dataframe转换为多维矩阵的方法
最近有一个需求要把dataframe转换为多维矩阵,然后可以使用values来实现,下面记录一下代码,方便以后使用. import pandas as pd import numpy as np df = pd.DataFrame(np.random.rand(3,3),columns=list('abc'),index=list('ABC')) print(df) print('============') print(df.values) 实现的效果: 以上这篇python的datafram
-
python中numpy的矩阵、多维数组的用法
1. 引言 最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工具箱,函数查询.调用.变量查询等非常方便,或许以后用久了python也会感觉很好用.与python相比,最喜欢的莫过于可以直接选中某段代码执行了,操作方便,python也可以实现,就是感觉不是很方便. 言归正传,做算法要用
-
详解Python二维数组与三维数组切片的方法
如果对象是二维数组,则切片应当是x[:]的形式,里面有一个冒号,冒号之前和之后分别表示对象的第0个维度和第1个维度: 如果对象是三维数组,则切片应当是x[::],里面有两个冒号,分割出三个间隔,三个间隔的前.中和后分别表示对象的第0.1.2个维度. x[n,:].x[:,n].x[m:n,:].x[:,m:n] 上面的中括号中(m:n)应当看成一个整体,除了(m:n)之外的冒号就是用来表明在哪个维度上操作的. 对于二维数组,在冒号前面的(n,)意味着对二维数组的第0个维度上的第n号元素操作,在冒
-
python实现把两个二维array叠加成三维array示例
遇到这样一个需求:程序中每次循环生成一个二维array,需要把每次循环的二维array叠加成一个三维的array,例如有如下两个矩阵: 组合成以下这种形式: 这样组合之后,有一个非常大的优点就是:保持原有的二维array的形式不变,便于以后取出,比如说我想从C中取出A,只需要执行:A=C[0,:]即可. 但是百度之后发现,在python中,numpy函数包中并没有对应的函数来实现三维array中不断添加二维array(有知道这个函数的欢迎在评论区告诉我) 这里,提供两种"曲线救国"的解
-
python 二维矩阵转三维矩阵示例
如下所示: >>> import numpy as np >>> a = np.arange(12).reshape(3,4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> type(a) <class 'numpy.ndarray'> >>> b=np.reshape(a,(3,4,1)) >>> np
-
Python二维数组实现求出3*3矩阵对角线元素的和示例
题目:求一个3*3矩阵对角线元素之和. 程序分析:利用双重for循环控制输入二维数组,再将a[i][i]累加后输出. def two_dimensionalArray(self): '二维数组实现求三阶矩阵的对角线元素之和' sum = 0 matrix = [[0, 1, 0], [0, 21, 0], [0, 12, 0]] matrix2 = [[0 for i in range(3)] for i in range(3)] matrix2[0][0] = 123 matrix2[1][1
-
Python:二维列表下标互换方式(矩阵转置)
我就废话不多说了,直接上代码吧! #!/usr/bin/env python # coding:UTF-8 """ @version: python3.x @author:曹新健 @contact: 617349013@qq.com @software: PyCharm @file: 二维列表下标互换(矩阵转置).py @time: 2018/12/30 10:24 """ ''' 矩阵转置 将[[1,2,3],[4,5,6],[7,8,9]]
-
对python实现二维函数高次拟合的示例详解
在参加"数据挖掘"比赛中遇到了关于函数高次拟合的问题,然后就整理了一下源码,以便后期的学习与改进. 在本次"数据挖掘"比赛中感觉收获最大的还是对于神经网络的认识,在接近一周的时间里,研究了进40种神经网络模型,虽然在持续一周的挖掘比赛把自己折磨的惨不忍睹,但是收获颇丰.现在想想也挺欣慰自己在这段时间里接受新知识的能力.关于神经网络方面的理解会在后续博文中补充(刚提交完论文,还没来得及整理),先分享一下高次拟合方面的知识. # coding=utf-8 import
-
Python绘图之二维图与三维图详解
各位工程师累了吗? 推荐一篇可以让你技术能力达到出神入化的网站"持久男" 1.二维绘图 a. 一维数据集 用 Numpy ndarray 作为数据传入 ply 1. import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt np.random.seed(1000) y = np.random.standard_normal(10) print "y = %s"% y x =
-
C语言面试C++二维数组中的查找示例
目录 二维数组中的查找 面试题3: 暴力遍历 动态基点操作 二维数组中的查找 面试题3: 似题: 我做过这个类似的有杨氏矩阵为背景的,实际上是一样的 暴力遍历 二维数组暴力遍历的话时间复杂度为O(n2) 虽然暴力但是应付学校考试这个就是一把好手 #include<stdio.h> //const 就是因为二维数组是定死的 int search(const int arr[4][4], int num,unsigned int* prow,unsigned int* pcol) { int i
-
基于python 二维数组及画图的实例详解
1.二维数组取值 注:不管是二维数组,还是一维数组,数组里的数据类型要一模一样,即若是数值型,全为数值型 #二维数组 import numpy as np list1=[[1.73,1.68,1.71,1.89,1.78], [54.4,59.2,63.6,88.4,68.7]] list3=[1.73,1.68,1.71,1.89,1.78] list4=[54.4,59.2,63.6,88.4,68.7] list5=np.array([1.73,1.68,1.71,1.89,1.78])
-
深入了解Python二维直方图
目录 前言 一.OpenCV中的二维直方图 二.Numpy中的二维直方图 三.直方图示例 1.使用Numpy函数计算直方图 2.使用OpenCV函数计算直方图 前言 只统计像素的灰度值这一特征,可将其成为一维直方图.二维直方图可以统计像素的色相和饱和度,用于查找图像的颜色直方图. 一.OpenCV中的二维直方图 OpenCV仍然使用cv2.calcHist()函数来查找图像的颜色直方图,只是在指定参数时与之前有所区别. cv2.calcHist()函数的基本格式如下: hist =cv2.cal
-
浅谈java中的一维数组、二维数组、三维数组、多维数组
这个数组可以看做新手学习,从一维数组 到 多维 数组 循环渐进,其实看起也很简单,一看便知,众所周知,一维.二维或许经常用到,用到二维以上应该就很少了. public class test { public static void main(String[] args) { /*一维数组*/ int num[] = {0,1,2}; /*下面输出 3 行数据,0 ~ 2*/ for (int i = 0; i < num.length; i++) { System.out.println("
随机推荐
- 基于mootools的圆角边框扩展代码
- oracle常见故障类别及规划解析
- asp.net 网络硬盘实现分析
- jQuery中将函数赋值给变量的调用方法
- 正则表达式,替换所有HTML标签的简单实例
- Asp.net管理信息系统中数据统计功能的实现方法
- js判断设备是否为PC并调整图片大小
- php实现仿写CodeIgniter的购物车类
- 宽带上网环境中的Sniffer攻防实例
- js显示世界时间示例(包括世界各大城市)
- Bootstrap中glyphicons-halflings-regular.woff字体报404错notfound的解决方法
- javascript递归回溯法解八皇后问题
- 如何解决在Azure上部署Sqlserver网络访问不了
- Ubuntu中为Android系统实现内置Java应用程序测试Application Frameworks层的硬件服务
- C++文件上传、下载工具
- android自定义ImageView仿图片上传示例
- Android开发之ListView的head消失页面导航栏的渐变出现和隐藏
- Laravel中unique和exists验证规则的优化详解
- 微信小程序Page中data数据操作和函数调用方法
- Nginx层面配置基础用户验证的完整步骤